Title: Analysis of Human DNA in Stool Samples as a Technique for Colorectal Cancer Screening

Description/Background

For patients at average to moderate risk for CRC, organizations such as the U.S. Preventive Services Task Force recommend several options for colon cancer screening. Advocates of DNA testing of stool samples have hypothesized that the relative simplicity of collecting a stool sample might increase the overall compliance with screening recommendations, and the detection of cancer-associated DNA may be superior to current stool tests for the detection of cancer and cancer precursors.

Screening stool or fecal DNA (Cologuard™) testing detects molecular markers of altered DNA that are contained in the cells shed by colorectal cancer and pre-malignant colorectal polyps. DNA tests are designed to detect very small amounts of DNA markers to identify colorectal cancer or pre-malignant colorectal neoplasia.

The Cologuard™ - multitarget sDNA test is a proprietary in vitro diagnostic device that incorporates both sDNA and fecal immunochemical test techniques and is designed to analyze patients’ stool samples for markers associated with the presence of colorectal cancer and pre-malignant colorectal neoplasia.

COLORECTAL CANCER

Several cellular genetic alterations have been associated with colorectal cancer (CRC). In the proposed multistep model of carcinogenesis, the tumor suppressor gene p53 and the proto-oncogene KRAS are most frequently altered. Variants in adenomatous polyposis coli (APC) genes and epigenetic markers (eg, hypermethylation of specific genes) have also been detected. CRC is also associated with DNA replication errors in microsatellite sequences (termed microsatellite instability) in patients with Lynch syndrome (formerly known as hereditary nonpolyposis CRC) and in subgroups of patients with sporadic colon carcinoma. Tumor-associated gene variants and epigenetic markers can be detected in exfoliated
intestinal cells in stool specimens. Because cancer cells are shed into the stool, tests have been developed to detect these genetic alterations in the DNA from shed CRC cells isolated from stool samples.

Regulatory Status:

On August 12, 2014, Cologuard™ (Exact Sciences) was approved by the U.S. Food and Drug Administration (FDA) through the premarket approval process as an automated fecal DNA testing product Cologuard™ (P130017). Cologuard™ is intended for the qualitative detection of colorectal neoplasia associated DNA markers and for the presence of occult hemoglobin in human stool.(1) A positive result may indicate the presence of colorectal cancer or advanced adenoma and should be followed by diagnostic colonoscopy. On September 20, 2019, the FDA approved the expansion of the Cologuard™ label to include adults ages ≥45 years.(2) Cologuard™ was previously indicated for those ≥50 years. Cologuard™ is not a replacement for diagnostic colonoscopy or surveillance colonoscopy in high-risk individuals. Over the past several years, different stool DNA tests have been evaluated in studies and some have been marketed. One previously marketed test, PreGen-Plus™ (LabCorp.), tests for 21 different mutations in the \(p53 \), \(APC \), and \(K-ras \) genes; the BAT-26 MSI marker; and incorporates the DNA Integrity Assay (DIA®). PreGen-Plus™ has not been cleared by the FDA. In January 2006, the FDA sent correspondence to LabCorp indicating that PreGen-Plus™ may be subject to FDA regulation as a medical device. As a consequence, and as a result of studies showing better performance of other tests, this test is no longer offered. Another previously marketed test is called ColoSure™ (OncoMethylome Sciences; now MDxHealth), which detects aberrant methylation of the vimentin (\(hV \)) gene. This test was offered as a laboratory-developed test and is not subject to FDA regulation.

Medical Policy Statement

The safety and effectiveness of DNA analysis of stool samples, using FDA approved tests, may be considered established as a screening technique for colorectal cancer for individuals at average risk who are 50 years of age and older.

The performance of COLOGUARD meets the recommendation for periodic colon cancer screening for three years.

Inclusionary and Exclusionary Guidelines *(Clinically based guidelines that may support individual consideration and pre-authorization decisions)*

Inclusions:

Screening of members who are 50-75 years old must meet **both** of the following criteria:

- At average risk for colon cancer
- Asymptomatic (no signs or symptoms of colorectal disease including but not limited to lower gastrointestinal pain, blood in the stools positive guaiac fecal occult blood test or fecal immunochemical test)
The decision to screen for colorectal cancer in adults aged 76 to 85 years should be an individual one, taking into account the patient’s overall health and prior screening history.

- Adults in this age group who have never been screened for colorectal cancer are more likely to benefit.
- Screening would be most appropriate among adults who meet both of the following indications:
 - Are healthy enough to undergo treatment if colorectal cancer is detected
 - Do not have co-morbid conditions that would significantly limit their life expectancy

Repeat studies, are appropriate at three-year intervals in individuals, who remain at average risk and meet all of the above requirements

Exclusions:

- The test is not indicated in the following: *(list may not be all inclusive)*
 - Symptomatic individuals
 - Personal history of adenomatous polyps
 - Personal history of colorectal cancer
 - History of inflammatory bowel disease
 - Family history of colorectal cancer or adenomatous polyps in a parent or other first degree relative, particularly when the age of cancer onset is 45 years or less.
 - Familial adenomatous polyposis
 - Lynch Syndrome
- DNA analysis of stool samples for all other indications not listed above

Because colonoscopy offers specific advantages as a colon cancer screening tool, providers should ideally discuss this as one of the options for screening with their patients, so an informed decision can be made.

CPT/HCPCS Level II Codes *(Note: The inclusion of a code in this list is not a guarantee of coverage. Please refer to the medical policy statement to determine the status of a given procedure)*

Established codes:

81528

Other codes (investigational, not medically necessary, etc.):

N/A

Rationale

Evidence reviews assess whether a medical test is clinically useful. A useful test provides information to make a clinical management decision that improves the net health outcome. That is, the balance of benefits and harms is better when the test is used to manage the condition than when another test or no test is used to manage the condition.

The first step in assessing a medical test is to formulate the clinical context and purpose of the test. The test must be technically reliable, clinically valid, and clinically useful for that purpose.
Evidence reviews assess the evidence on whether a test is clinically valid and clinically useful. Technical reliability is outside the scope of these reviews, and credible information on technical reliability is available from other sources.

Fecal Immunochemical Testing - DNA

For patients at average risk for colorectal cancer (CRC), organizations such as the U.S. Preventive Services Task Force recommend several options for colon cancer screening. Advocates of DNA testing of stool samples have hypothesized that the relative simplicity of collecting a stool sample might increase the overall compliance with screening recommendations, compared with imaging or direct visualization screening strategies, and tests that detect cancer-associated DNA in the stool may be superior to current stool tests for the detection of cancer and cancer precursors.

The diagnostic performance characteristics of the currently accepted screening options (ie, fecal occult blood testing, fecal immunochemical testing [FIT], flexible sigmoidoscopy, double-contrast barium enema) have been established using colonoscopy as the criterion standard. Modeling studies and clinical trial evidence on some of the screening modalities have allowed some confidence on the effectiveness of several cancer screening modalities. The efficacy of these tests is supported by numerous studies evaluating the diagnostic characteristics of the test for detecting cancer and cancer precursors along with a well-developed body of knowledge on the natural history of the progression of cancer precursors to cancer.

Clinical Context and Test Purpose

The purpose of stool DNA testing in patients who are at average risk of CRC is to inform a decision whether to proceed to colonoscopy.

The question addressed in this evidence review is: Does testing of stool DNA improve the net health outcome for asymptomatic individuals at average risk of CRC who are undergoing routine CRC screening?

The following PICOs were used to select literature to inform this review.

Patients

The evidence discussed pertains only to screening of individuals at average risk of CRC. There are no studies of stool DNA testing for screening individuals at high risk of CRC.

Interventions

The evidence discussed is restricted to studies evaluating Cologuard, the only test approved by the Food and Drug Administration, which combines FIT and DNA analysis (FIT-DNA). A stool sample is collected at home, prepared in a collection kit, and shipped to the manufacturer for analysis.

Comparators

The criterion standard for CRC screening is colonoscopy every ten years.

Outcomes

The important outcome of interest in cancer screening is a reduction in mortality and morbidity due to cancer. This is ideally determined by randomized controlled trials. However, for colon cancer screening, many of the recommended tests have not been evaluated with clinical trials.
When lacking direct evidence that a screening test reduces cancer mortality, the critical parameters in the evaluation are the diagnostic performance characteristics (ie, sensitivity, specificity, positive and negative predictive value) compared with a criterion standard, the proposed frequency of screening, and the follow-up management of test results. Modeling studies have evaluated the robustness and quantity of health benefits of various screening tests when clinical trial evidence is lacking.

The time of interest is during standard-interval screening. For patients of average risk undergoing colonoscopy, this is every ten years beginning at age 50. The Food and Drug Administration approved (September 2019) the use of this test for patients 45 years and older. CRC screening with Cologuard may be needed more frequently.

Study Selection Criteria
For the evaluation of the clinical validity of this test, studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the marketed version of the technology (including any algorithms used to calculate scores)
- Included a suitable reference standard (describe the reference standard)
- Patient/sample clinical characteristics were described
- Patient/sample selection criteria were described.

Technically Reliable
Assessment of technical reliability focuses on specific tests and operators and requires review of unpublished and often proprietary information. Review of specific tests, operators, and unpublished data are outside the scope of this evidence review and alternative sources exist. This evidence review focuses on the clinical validity and clinical utility.

Clinically Valid
A test must detect the presence or absence of a condition, the risk of developing a condition in the future, or treatment response (beneficial or adverse).

Preliminary studies of the FIT-DNA (Cologuard), which was eventually evaluated in the large-scale screening study by Imperiale et al (2014),(3) were conducted by Ahlquist et al (2012) (4,5) and Lidgard et al (2013).(6) This multi-target FIT-DNA consists of quantitative measurements of molecular assays for aberrantly methylated BMP3 and NDRG4 promoter regions, mutant KRAS, β-actin, and hemoglobin in a logistic-regression algorithm. Because it includes a FIT in its algorithm, it is actually a combined stool DNA and FIT test. In a study of 252 patients with CRC, 133 patients with adenomas of 1 cm or larger and 293 subjects with normal colonoscopy, the test detected 85% of colon cancer cases and 54% of subjects with adenomas, with 90% specificity.(4) Another smaller study of this same test showed a sensitivity of 87% for detecting CRC and 82% sensitivity for detecting adenomas.(5) In the Lidgard et al (2013) study, of 1003 patients, there were 207 cases with CRC or advanced adenomas (>1 cm), and 796 control patients with no polyps or non-advanced adenomas (<1 cm). In the case group, 93 subjects had CRC, 84 had advanced adenoma 1 cm or larger and 30 had sessile serrated adenoma 1 cm or larger. In the control group, 155 subjects had non-advanced adenomas and 641 had no colonic lesions. Using a logistic regression algorithm that incorporates 11 markers into a single regression score and a fixed specificity of 90%, the FIT-DNA identified 84 of 86 (98% sensitivity) CRCs and 41 of 73 (56% sensitivity) advanced adenoma cases.(6) These preliminary studies all evaluated stool DNA using pre-assembled
samples of study subjects with and without cancer or colonic lesions. For diagnostic characteristics of tests evaluated in these types of study samples may be biased.

A large-scale evaluation of this test in a screening population was published by Imperiale et al (2014), who compared the FIT-DNA in 12,000 asymptomatic persons at average risk for CRC.(3) The results of this study supported the U.S. Food and Drug Administration (FDA) approval of this fecal DNA test (Cologuard™) in August 2014. All enrolled subjects were scheduled to undergo a screening colonoscopy. Stool specimens were collected and tested no more than 90 days before the screening colonoscopy. Screening colonoscopy findings were considered the reference standard for determining the diagnostic characteristics of FIT-DNA for detecting colorectal cancer and cancer precursors. In 9989 evaluable subjects, FIT-DNA sensitivity for cancer was 92.3% (95% CI, 83.0% to 97.5%) and for FIT it was 73.8% (95% CI, 61.5% to 84.0%). For advanced precancerous lesion, fecal DNA test sensitivity was 42.4% (95% CI, 38.9% to 46.0%) and for FIT it was 23.8% (95% CI, 20.8% to 27.0%). In analyses of specific types of lesions, sensitivity of the fecal FIT-DNA did not vary by cancer stage or cancer location. Among patients with advanced precancerous lesions, the sensitivity of fecal DNA testing was higher for distal lesions than for proximal lesions. FIT-DNA sensitivity increased as lesion size increased. The specificity of the FIT-DNA was lower than that of FIT. For identification of patients with insignificant lesions and negative colonoscopy, specificity of the FIT-DNA test was 89.8% versus 94.9% for FIT. For identification of patients with negative colonoscopy, specificity of the fecal DNA test was 89.8% (95% CI, 88.9% to 90.7%) and 96.4% (95% CI, 95.8% to 96.9%) for FIT.

A second evaluation of FIT-DNA was published by Redwood et al (2016).(7) Asymptomatic Alaska natives undergoing screening or surveillance colonoscopy were enrolled in the study. Colonoscopy findings were considered the reference standard for determining the diagnostic characteristics of the FIT-DNA and FIT for detecting CRC and cancer precursors. In 661 evaluable subjects, FIT-DNA sensitivity for cancer was 100% and for FIT it was 85%. For screening-relevant neoplasms (defined as adenoma or sessile serrated adenoma/polyp ≥1 cm, any adenoma with ≥25% villous component, or cancer), FIT-DNA sensitivity was 49% and 28% for FIT. Specificities for FIT-DNA were lower than FIT. When all patients with no screening-relevant neoplasms were considered normal, specificities were 91% for FIT-DNA and 94% for FIT. When only patients without any polyps were considered normal, specificities were 93% for FIT-DNA and 96% for FIT.

Section Summary: Clinically Valid
The two studies of FIT-DNA are consistent with each other in that both have demonstrated the higher sensitivity of FIT-DNA than for FIT for both CRC detection and cancer precursor detection, but lower specificity. The Imperiale et al (2014) study is more than ten times the size of that by Redwood et al (2016) and thus represents the best estimate of the diagnostic performance of FIT-DNA in a single screening.

Clinically Useful
A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.
Direct Evidence

Direct evidence of clinical utility is provided by studies that have compared health outcomes for patients managed with and without the test. Because these are intervention studies, the preferred evidence would be from randomized controlled trials.

There are no studies evaluating the direct health outcomes of a longitudinal screening program using Cologuard.

A comparative effectiveness modeling study by Barzi et al (2017) found that colonoscopy was the most effective screening strategy with the highest life years gained (0.022 life years) and CRCs prevented (n=1068), and the lowest total cost.(8) Modeling for FIT-DNA every year or every other year found 0.011 life years gained, 647 CRCs prevented, and a higher total cost. The main reason for the difference in CRCs prevented was due to the detection of precancerous polyps. The study found that if the sensitivity of FIT-DNA for adenomas increased, it could surpass the sensitivity of colonoscopy. An unexpected consequence of a positive FIT-DNA test may be to improve the quality of the subsequent colonoscopy.(9)

Knudsen et al (2016) compared different CRC screening strategies using microsimulation modeling techniques to inform the U.S. Preventive Services Task Force CRC screening recommendations (see Table 1).(8) Diagnostic characteristics of FIT-DNA from the Imperiale study were incorporated into the model and screening outcomes from various screening strategies were estimated and compared. FIT-DNA was evaluated in these models using both a yearly screening strategy and an every three-year strategy. The modeling results suggested that stool DNA screening produces outcomes within the range of the other screening strategies. FIT-DNA every three years is at the lower range of effectiveness, only higher than flexible sigmoidoscopy, and testing every year is at the higher range of effectiveness, only lower than colonoscopy every ten years. In terms of complications or lifetime burden as expressed as colonoscopies, FIT-DNA appears to be in the range of other CRC screening strategies, with every year screening having higher complication and colonoscopy rates than every three-year screening. Both measures of harm were estimated to be lower than the screening strategy of colonoscopy every ten years. The analysis proposed a set of screening modalities that were considered model-recommendable, based on having at least 90% of the life-year gain of colonoscopy and having met certain efficiency criteria. FIT-DNA was not selected as a model-recommended strategy because it was not considered as efficient as other stool-based strategies.

Table 1. Outcomes of CRC Screening Strategies Over a Lifetime, in Order of Life-Years, Gained

<table>
<thead>
<tr>
<th>Screening Method and Screening Interval</th>
<th>Life-Years Gained per 1000 Screened</th>
<th>CRC Deaths Averted per 1000 Screened</th>
<th>Complications of Screening and Follow-Up per 1000 Screened</th>
<th>Lifetime No. of Colonoscopies per 1000 Screened</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible sigmoidoscopy, 5 y</td>
<td>221</td>
<td>20</td>
<td>10</td>
<td>1820</td>
</tr>
<tr>
<td>FIT-DNA, 3 y</td>
<td>226</td>
<td>20</td>
<td>9</td>
<td>1714</td>
</tr>
<tr>
<td>FIT, 1 y</td>
<td>244</td>
<td>22</td>
<td>10</td>
<td>1757</td>
</tr>
<tr>
<td>FOBT, 1 y</td>
<td>247</td>
<td>22</td>
<td>11</td>
<td>2253</td>
</tr>
<tr>
<td>CT colonography, 5 y</td>
<td>248</td>
<td>22</td>
<td>10</td>
<td>1743</td>
</tr>
<tr>
<td>Flexible sigmoidoscopy, 10 y + FIT, 1 y</td>
<td>256</td>
<td>23</td>
<td>11</td>
<td>2289</td>
</tr>
<tr>
<td>FIT-DNA, 1 y</td>
<td>261</td>
<td>23</td>
<td>12</td>
<td>2662</td>
</tr>
<tr>
<td>Colonoscopy, 10 y</td>
<td>270</td>
<td>24</td>
<td>15</td>
<td>4049</td>
</tr>
</tbody>
</table>

Adapted from Knudsen et al (2016). CRC: colorectal cancer; CT: computed tomography; FIT: fecal immunochemical testing; FOBT: fecal occult blood testing.
Another modeling study, by Berger et al (2016), sponsored by the manufacturer of Cologuard, showed similar findings. Compared with colonoscopy every ten years, yearly FIT-DNA was estimated to produce similar reductions in CRC incidence and mortality. Every three-year and every five-year testing produced less reduction in CRC incidence and mortality. Colonoscopy every ten years was estimated to decrease CRC incidence by 65%, whereas FIT-DNA every 3 years reduced CRC incidence by 57% and FIT-DNA every 5 years reduced CRC incidence by 52%.

A TEC Special Report (2014) evaluated FIT-DNA for CRC screening. The report found the Imperiale et al (2014) study to be of good quality but noted while FIT-DNA had higher sensitivity than FIT for various types of colorectal lesions, these results represented the diagnostic characteristics of the FIT-DNA in a one-time cross-sectional study. How these study results would translate to reduced colorectal mortality in a longitudinal screening program has not been directly assessed. The optimal screening interval is unknown.

Section Summary: Clinically Useful

Modeling studies comparing different screening strategies have demonstrated that the diagnostic characteristics of FIT-DNA as shown in the existing studies are consistent with decreases in CRC mortality that are in the range of other accepted modalities. FIT-DNA every year is estimated to be close to but not as effective as colonoscopy every ten years. FIT-DNA every three years is estimated to be less effective than most of the other accepted screening strategies. Estimates of harms and burdens are in the range of other screening strategies, but the test was considered less efficient than other methods.

SUMMARY OF EVIDENCE

For individuals who are asymptomatic and at average risk of CRC who receive FIT-DNA, the evidence includes a number of small studies comparing FIT-DNA (in early stages of development) with colonoscopy, two screening studies comparing the final version of the FIT-DNA (using colonoscopy as the reference standard), and two modeling studies. Relevant outcomes are overall survival, disease-specific survival. The screening studies have reported that FIT-DNA has higher sensitivity and lower specificity than FIT. There are no studies directly assessing health outcomes such as overall survival or disease-specific survival. The test characteristics of FIT-DNA show the potential of the test to be an effective CRC screening test, but there is uncertainty about other aspects of it. The screening interval for the test has not been firmly established nor is there evidence on the adherence of the test at a recommended screening interval. Effective screening for CRC requires a screening program with established screening intervals and appropriate follow-up for positive tests. Clinical utility of FIT-DNA is based on modeling studies. These studies have demonstrated that the diagnostic characteristics of FIT-DNA are consistent with decreases in CRC mortality that are in the range of other accepted modalities. FIT-DNA every three years is less effective than most other accepted screening strategies, while FIT-DNA every year is close to the efficacy of colonoscopy every ten years. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.
Supplemental Information

PRACTICE GUIDELINES AND POSITION STATEMENTS
Several recommendations of specialty organizations regarding fecal DNA testing were based largely on the Imperiale et al (2004) which evaluated a different test and should be considered obsolete.(13) This includes 2008 guidelines from the American Cancer Society,(14) 2012 guidelines from the American College of Physicians,(15) and 2009 guidelines from the American College of Gastroenterology.(16)

National Comprehensive Cancer Network
The National Comprehensive Cancer Network guidelines (v.2.2019) for colorectal cancer (CRC) screening includes the use of fecal immunochemical testing−DNA (FIT-DNA) to screen patients with an average risk for colon cancer.(17) Following a negative test, the recommendation is to rescreen with any modality after three years. Use of FIT-DNA tests is not described for the screening of high-risk individuals.

Current guidelines from the National Comprehensive Cancer Network do not include recommendations for chimeric antigen receptor T-cell therapy in certain hematologic cancers, including the central nervous system (eg, secondary CNS lymphoma) and Hodgkin lymphoma.

Current NCCN guidelines for acute lymphoblastic leukemia (v.1.2020) recommend (category 2A) tisagenlecleucel as a treatment option for:
- Philadelphia chromosome-positive patients 26 years or less in age with refractory disease or 2 or more relapses and failure of 2 tyrosine kinase inhibitors.
- Philadelphia chromosome-negative patients 26 years or less in age with refractory disease or 2 or more relapses.

Current Network guidelines for B-cell non-Hodgkin lymphoma (v.4.2019) recommend (category 2A) axicabtagene ciloleucel or tisagenlecleucel as a treatment option for:
- For histological transformation to diffuse large B-cell lymphoma after multiple lines of prior therapies which include ≥2 chemo-immunotherapy regimens for the indolent or transformed disease.
- For relapsed or refractory disease diffuse large B-cell lymphoma after multiple lines of prior therapies which include ≥2 chemo-immunotherapy regimens for the indolent or transformed disease.

Footnotes
i Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Pediatric Acute Lymphoblastic Leukemia V.1.2020 and B-Cell Lymphomas V.4.2019. © National Comprehensive Cancer Network, Inc. 2019. All rights reserved. Accessed September 2, 2019. To view the most recent and complete version of the guideline, go online to NCCN.org.

ii NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.
Multi-Society Task Force on Colorectal Cancer
A U.S. Multi-Society task force representing the American College of Gastroenterology, the American Gastroenterological Association, and the American Society for Gastrointestinal Endoscopy (2017) provided recommendations for colorectal cancer screening.(18) The recommended first tier tests for individuals with average risk were colonoscopy every ten years, and for individuals who decline colonoscopy, annual fecal immunochemical testing (FIT). Recommended second tier tests in patients who declined the first-tier tests were computed tomography (CT) colonography every five years, FIT-DNA every three years, or flexible sigmoidoscopy every five to ten years. Capsule colonoscopy was listed as a third-tier test. The task force recommended “CT colonography every five years or FIT-fecal DNA every three years (strong recommendation, low quality evidence, or flexible sigmoidoscopy every five to ten years (strong recommendation, high quality evidence) in patients who refuse colonoscopy and FIT.”

American Cancer Society
The American Cancer Society (2018) updated its guidelines for CRC screening for average-risk adults.(19) Regular screening with either a structural examination (ie colonoscopy) or a high-sensitivity stool-based test is recommended to start in adults who are 45 years and older (qualified recommendation) or who are 50 years and older (strong recommendation). Recommendations for screening with stool-based tests include FIT repeated every year, high-sensitivity guaiac-based fecal occult blood test repeated every year, or multitarget stool DNA test repeated every three years.

U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATIONS
The U.S. Preventive Services Task Force (USPSTF [2016]) published its most recent recommendations for CRC screening.(20) CRC screening is recommended starting at age 50 years and continuing until age 75 years (A recommendation). The recommendation statement reviewed seven different screening strategies including FIT-DNA. Regarding comparisons or preferences between the seven different methods mentioned: “The USPSTF found no head-to-head studies demonstrating that any of the screening strategies it considered are more effective than others, although the tests have varying levels of evidence supporting their effectiveness, as well as different strengths and limitations…. The screening tests are not presented in any preferred or ranked order….“ USPSTF noted that sensitivity of FIT-DNA is higher than with FIT, but specificity is lower “resulting in more false-positive results, more diagnostic colonoscopies, and more associated adverse events per screening test”.

ONGOING AND UNPUBLISHED CLINICAL TRIALS
Some currently unpublished trials that might influence this review are listed in Table 2.

Table 2. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01647776</td>
<td>Screening and Risk Factors of Colon Neoplasia</td>
<td>1600</td>
<td>Dec 2019</td>
</tr>
<tr>
<td>NCT02419716a</td>
<td>A Longitudinal Study of Cologuard™ in an Average Risk Population Assessing a Three Year Test Interval</td>
<td>2404</td>
<td>Jul 2020</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.
*a Denotes industry-sponsored or cosponsored trial.
Government Regulations

National:

"NCD for Colorectal Cancer Screening Tests (210.3)," Effective Date 10/9/14, Implementation Date 9/8/15 Pub number 100-3; v. 5. (21)

The Cologuard™ - Multitarget Stool DNA (sDNA) Test (effective October 9, 2014)

The CologuardTM test is covered once every three years for Medicare beneficiaries who meet all of the following criteria:

- Age 50 to 85 years,
- Asymptomatic (no signs or symptoms of colorectal disease including but not limited to lower gastrointestinal pain, blood in stool, positive guaiac fecal occult blood test or fecal immunochemical test), and
- At average risk of developing CRC (no personal history of adenomatous polyps, colorectal cancer, or inflammatory bowel disease, including Crohn’s Disease and ulcerative colitis; no family history of colorectal cancers or adenomatous polyps, familial adenomatous polyposis, or hereditary nonpolyposis colorectal cancer).

Nationally Non-Covered Indications

All other indications for colorectal cancer screening not otherwise specified in the Act and regulations, or otherwise specified above remain nationally non-covered. Non-coverage specifically includes:

- All screening sDNA tests, effective April 28, 2008, through October 8, 2014. Effective for dates of service on or after October 9, 2014, all other screening sDNA tests not otherwise specified above remain nationally non-covered.

As noted in the CMS decision memo, the optimal screening interval for Cologuard is unknown. In the interim, CMS has indicated it will provide coverage for Cologuard every 3 years as previously specified and will reevaluate the screening interval after the Food and Drug Administration approval study is completed.

Local:

There is no Local Coverage Determination for fecal DNA analysis for colorectal cancer screening.

(The above Medicare information is current as of the review date for this policy. However, the coverage issues and policies maintained by the Centers for Medicare & Medicare Services [CMS, formerly HCFA] are updated and/or revised periodically. Therefore, the most current CMS information may not be contained in this document. For the most current information, the reader should contact an official Medicare source.)

Related Policies

N/A
References

The articles reviewed in this research include those obtained in an Internet based literature search for relevant medical references through 1/24/20, the date the research was completed.
<table>
<thead>
<tr>
<th>Policy Effective Date</th>
<th>BCBSM Signature Date</th>
<th>BCN Signature Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/6/03</td>
<td>10/6/03</td>
<td>10/6/03</td>
<td>Joint medical policy established</td>
</tr>
<tr>
<td>2/2/04</td>
<td>2/2/04</td>
<td>3/1/04</td>
<td>S code received – effective April 1, 2004</td>
</tr>
<tr>
<td>6/15/05</td>
<td>6/15/05</td>
<td>5/18/05</td>
<td>Routine maintenance</td>
</tr>
<tr>
<td>1/1/07</td>
<td>11/1/06</td>
<td>9/24/06</td>
<td>Routine maintenance</td>
</tr>
<tr>
<td>1/1/08</td>
<td>10/16/07</td>
<td>11/11/07</td>
<td>Routine maintenance</td>
</tr>
<tr>
<td>3/1/09</td>
<td>12/1/09</td>
<td>12/21/08</td>
<td>Routine maintenance</td>
</tr>
<tr>
<td>9/1/10</td>
<td>6/15/10</td>
<td>6/29/10</td>
<td>Routine maintenance</td>
</tr>
<tr>
<td>3/1/12</td>
<td>12/13/11</td>
<td>12/21/11</td>
<td>Routine maintenance</td>
</tr>
<tr>
<td>5/1/13</td>
<td>2/19/13</td>
<td>3/4/13</td>
<td>Routine maintenance; incorporated BCBSA’s policy; title changed from “Fecal DNA Analysis for Colorectal Cancer Screening” to current title.</td>
</tr>
<tr>
<td>3/1/15</td>
<td>12/9/14</td>
<td>12/29/14</td>
<td>Routine maintenance; updated Medicare NCD coverage information for Cologuard™; codes 81479 and G0464 added to policy; references updated</td>
</tr>
</tbody>
</table>
| 3/1/16 | 12/10/15 | 12/10/15 | • Routine maintenance
 • Added procedure code 81528; deleted S3890, G0464 and unlisted procedure code 81479
 • References updated
 • U.S. Preventative Services Task Force recommendation updated
 • National Guidelines updated to reflect Version 1.2015 |
| 11/1/16 | 8/16/16 | 8/16/16 | • Routine maintenance |
| 3/1/17 | 1/27/17 | 12/31/16 | • Change in policy status from experimental/investigational to established. |
| 3/1/17 | 4/18/17 | 4/18/17 | • Updated NCCN guidelines
 • Added age 50-75 to inclusions |
<table>
<thead>
<tr>
<th>Date</th>
<th>Previous Date</th>
<th>Current Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1/18</td>
<td>12/12/17</td>
<td>12/12/17</td>
<td>Added USPTF recommendations for age 76-85 years old to inclusions</td>
</tr>
<tr>
<td>3/1/19</td>
<td>12/11/18</td>
<td>12/11/18</td>
<td>Routine maintenance</td>
</tr>
<tr>
<td>7/1/19</td>
<td>4/16/19</td>
<td></td>
<td>Routine maintenance</td>
</tr>
<tr>
<td>7/1/20</td>
<td>4/14/20</td>
<td></td>
<td>Routine maintenance</td>
</tr>
</tbody>
</table>

Next Review Date: 2nd Qtr, 2021
BLUE CARE NETWORK BENEFIT COVERAGE
POLICY: ANALYSIS OF HUMAN DNA IN STOOL SAMPLES AS A TECHNIQUE FOR COLORECTAL CANCER SCREENING

I. Coverage Determination:

<table>
<thead>
<tr>
<th>Plan Type</th>
<th>Coverage/Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial HMO (includes Self-Funded groups unless otherwise specified)</td>
<td>Covered; criteria apply</td>
</tr>
<tr>
<td>BCNA (Medicare Advantage)</td>
<td>Refer to the Medicare information under the Government Regulations section of this policy.</td>
</tr>
<tr>
<td>BCN65 (Medicare Complementary)</td>
<td>Coinsurance covered if primary Medicare covers the service.</td>
</tr>
</tbody>
</table>

II. Administrative Guidelines:

- The member's contract must be active at the time the service is rendered.
- Coverage is based on each member's certificate and is not guaranteed. Please consult the individual member’s certificate for details. Additional information regarding coverage or benefits may also be obtained through customer or provider inquiry services at BCN.
- The service must be authorized by the member's PCP except for Self-Referral Option (SRO) members seeking Tier 2 coverage.
- Services must be performed by a BCN-contracted provider, if available, except for Self-Referral Option (SRO) members seeking Tier 2 coverage.
- Payment is based on BCN payment rules, individual certificate and certificate riders.
- Appropriate copayments will apply. Refer to certificate and applicable riders for detailed information.
- CPT - HCPCS codes are used for descriptive purposes only and are not a guarantee of coverage.