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Title: Genetic Testing (Single Nucleotide Variants) to Predict 
Risk of Nonfamilial Breast Cancer 

 
 
Description/Background 
 
Several single nucleotide variants (SNVs), which are single base-pair variations in the DNA 
sequence of the genome, have been found to be associated with breast cancer, and are 
common in the population, but confer only small increases in risk. Commercially available 
assays test for several SNVs to predict an individual’s risk of breast cancer relative to the 
general population. Some of these tests incorporate clinical information into risk prediction 
algorithms. The intent of this type of test is to identify subjects at increased risk who may benefit 
from more intensive surveillance. 
 
Clinical Genetic Tests 
  
GeneType  for Breast Cancer 
GeneType for Breast Cancer (and the previous versions of the test, BREVAGenplus® and 
BREVAGen®) evaluates breast cancer-associated single nucleotide variants (SNVs) identified 
in genome-wide association studies. The first-generation test, BREVAGen, included 7 SNVs. 
Currently, GeneType includes over 70 SNVs.(3) Risk is calculated by combining individual SNV 
risks with other risk factors. GeneType has been evaluated for use in African American, 
Caucasian, and Hispanic patient samples, age 35 years and older, who do not have a history of 
in situ or invasive breast cancer and are not carriers of a known pathogenic variant or 
rearrangement in a breast cancer susceptibility gene.(4) 
 
Health Disparities in Breast Cancer 
Based on data from 2014 through 2018, age-adjusted breast cancer mortality is approximately 
40% higher among Black women compared to non-Hispanic White women in the United States 
(27.7 vs 20.0 deaths per 100,000 women), despite a lower overall incidence of breast cancer 
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among Black women (125.8 vs 139.2 cases per 100,000 women).(1) Experts postulate that this 
divergence in mortality may be related to access issues - Black women are more likely than 
White women to lack health insurance, limiting access to screening and appropriate therapies. 
Socioeconomic status is also a driver in health and health outcome disparities related to breast 
cancer.(2) Women with low incomes have significantly lower rates of breast cancer screening, a 
higher probability of late-stage diagnosis, and are less likely to receive high quality care, 
resulting in higher mortality from breast cancer. 
 
 
Regulatory Status 
 
Clinical laboratories may develop and validate tests in-house and market them as a laboratory 
service; laboratory-developed tests must meet the general regulatory standards of the Clinical 
Laboratory Improvement Amendments. GeneType for Breast Cancer (Genetic Technologies) 
is available under the auspices of the Clinical Laboratory Improvement Amendments. 
Laboratories that offer laboratory-developed tests must be licensed by the Clinical Laboratory 
Improvement Amendments for high-complexity testing. To date, the U.S. Food and Drug 
Administration has chosen not to require any regulatory review of this test. 
 
 
Medical Policy Statement 
 
The effectiveness and clinical utility of genetic testing using single nucleotide variants to 
predict future risk of breast cancer is experimental/investigational. There is insufficient 
scientific evidence on the analytical and clinical validity as well as clinical utility of these tests 
on individual management and outcomes. 
 
 
Inclusionary and Exclusionary Guidelines  
 
N/A 
 
 
CPT/HCPCS Level II Codes (Note: The inclusion of a code in this list is not a guarantee of 
coverage. Please refer to the medical policy statement to determine the status of a given procedure.) 
  
Established codes: 

N/A                               
 
Other codes (investigational, not medically necessary, etc.): 

81479 81599                         
 
Note: No specific code represents this testing. Not otherwise classified codes may be used for 
inquiry, billing or appeal purposes. 
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Rationale 
 
SINGLE NUCLEOTIDE VARIANTS AND AVERAGE BREAST CANCER RISK  
 
Clinical Context and Test Purpose  
Rare, single-gene variants conferring a high risk of breast cancer have been linked to 
hereditary breast cancer syndromes. Examples are variants in BRCA1 and BRCA2. These, 
and a few other genes, account for less than 25% of inherited breast cancer. Moderate risk 
alleles, such as variants in the CHEK2 gene, are also relatively rare and apparently explain 
very little of the genetic risk. 
 
In contrast, several common SNVs associated with breast cancer have been identified 
primarily through genome-wide association studies of very large case-control populations. 
These alleles occur with high frequency in the general population, and the increased breast 
cancer risk associated with each is very small relative to the general population risk. Some 
have suggested that these common-risk SNVs could be combined for individualized risk 
prediction either alone or in combination with traditional predictors; personalized breast cancer 
screening programs could then vary by starting age and intensity according to risk. Along 
these lines, the American Cancer Society recommends that women at high risk (>20% lifetime 
risk) should undergo breast magnetic resonance imaging (MRI) and a mammogram every 
year, and those at moderately increased risk (15%-20% lifetime risk) should talk with their 
doctors about the benefits and limitations of adding magnetic resonance imaging screening to 
their yearly mammogram.(5) 
 
The purpose of genetic testing in asymptomatic individuals is to predict the risk of disease 
occurrence. The criteria under which prognostic testing may be considered clinically useful are 
as follows:  
• An association of the marker with the disease has been established; and  
• The clinical utility of identifying the variants has been established (e.g., by demonstrating 

that testing will lead to changes in surveillance and/or treatment).  
 
The following PICOs were used to select literature to inform this review.  
 
Populations  
The relevant population of interest is individuals who have not been identified as being at high 
risk of breast cancer. This population would include individuals who do not have a family 
member who has had breast cancer.  
  
Interventions  
The intervention of interest is testing for common single nucleotide variants (SNVs) associated 
with a small increase in the risk of breast cancer.  
  
Comparator  
The following practice is currently being used to predict the risk of breast cancer: standard 
clinical risk prediction without testing for common SNVs associated with risk of breast cancer.  
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Outcomes  
The outcomes of interest are a reclassification of individuals from normal risk and evidence of 
a change in management (e.g., preventive or screening strategies) that results in improved 
health outcomes.  
 
Study Selection Criteria  
For the evaluation of clinical validity of the SNV test, studies that meet the following eligibility 
criteria were considered: 
• Reported on the accuracy of the marketed version of the technology; 
• Included a suitable reference standard; 
• Patient/sample clinical characteristics were described; 
• Patient/sample selection criteria were described. 

 
Clinically Valid  
A test must detect the presence or absence of a condition, the risk of developing a condition in 
the future, or treatment response (beneficial or adverse).  
 
Review of Evidence 
Genome-wide association studies (GWAS) examine the entire genome of thousands of 
subjects for SNVs at semi-regular intervals and attempt to associate SNV alleles with particular 
diseases. Several case-control GWAS, primarily in White women, have investigated common-
risk markers of breast cancer. A number of SNVs associated with breast cancer have been 
reported at a high level of statistical significance and have been validated in 2 or more large, 
independent studies.(6-14) SNVs associated with breast cancer risk in Asian and African 
women have been the subject of a number of articles.(15-29) 
  
Systematic Reviews  
A number of meta-analyses have investigated the association between breast cancer and 
individual SNVs. Meta-analyses of case-control studies have indicated that specific SNVs are 
associated with increased or decreased breast cancer risk (see Table 1). Other meta-analyses 
have revealed the interaction between the environment (e.g., obesity, age at menarche) 
(28,29) or ethnicity (30-31) and breast cancer risk conferred by certain SNVs. Zhou et al 
(2013) found that a specific variant in the vitamin D receptor gene increased breast cancer risk 
in African American but not white women.(37) Breast cancer risk associated with SNVs in 
microRNAs is commonly modified by ethnicity.(38-42) Meta-analyses of GWAS have identified 
SNVs at new breast cancer susceptibility loci.(43-45) All of these markers are considered to be 
in an investigational phase of development. 
 
Milne et al (2014), on behalf of the Breast Cancer Association Consortium, conducted a mega-
analysis of 46,450 case patients and 42,461 controls from 38 international meta-analytic 
studies.(46) Reviewers assessed 2-way interactions among 3277 breast cancer-associated 
SNVs. Of 2.5 billion possible 2-SNV combinations, none were statistically significantly 
associated with breast cancer risk. The meta-analysis suggested that risk models may be 
simplified by eliminating interaction terms. Reviewers cautioned that despite the large sample 
size, the study might have been underpowered to detect very small interaction effects, which 
tend to be smaller than the main effects. 
  
Joshi et al (2014), also on behalf of the Breast and Prostate Cancer Cohort Consortium, 
conducted a meta-analysis of 8 prospective cohort studies conducted in the United States, 
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Europe, and Australia to examine 2-way interactions between genetic and established clinical 
risk factors.(47) Based on published GWAS, 23 SNVs were selected for analysis in 10,146 
cases of invasive breast cancer and 12,760 controls. Patients were of European ancestry and 
matched on age and other factors specific to each study. After correction for multiple 
comparisons, a statistically significant excess in relative risk was attributed to the interaction 
between rs10483813 variants in the RAD51L1 gene and body mass index (BMI). 
 
Table 1. Examples of Meta-Analyses of SNVs and Associations with Breast Cancer 
SNVs Association Study  

Positive None Protective 
 

2q35 [rs13387042] 
�� 
  

Gu et al (2013)  
8q24 [G-allele of rs13281615] 
�� 

  
Gong et al (2013)  

8q24 [homozygous A-alleles of rs13281615] 
  


�� Gong et al (2013)  
Wang et al (2020) 

ABCB1 (G2677TA)  
��  Liu et al (2019) 
AKAP9 [M463I] 
�� 

  
Milne et al (2014)  

ATR-CHEK1 checkpoint pathway genesa 
 


�� 
 

Lin et al (2013)  
ATXN7 [K264R] 
�� 

  
Milne et al (2014)  

Chemotactic cytokinesb 
 


�� 
 

Bodelon et al (2013)  
COMT [V158M] 

  

�� He et al (2012)  

COX2 [rs20417] 
�� 
  

Dai et al (2014)  
COX2 [rs689466] 

  

�� Dai et al (2014)  

COX2 [rs5275] 
 


�� 
 

Dai et al (2014)  
COX11 [rs6504950] 

  

�� Tang et al (2012)  

CYP1A1 [T3801C] 
�� 
  

He et al (2014)  
CYP1A2 1F [A-allele of rs762551] 
�� 

  
Tian et al (2013)  

CYP19 [rs10046] 
 


�� 
 

Pineda et al (2013)  
Fibroblast growth factor receptor genesc 

 

�� 

 
kConFab Investigators 
(2014)  

IL-1β [rs1143634] 
��   Jafrin et al (2021) 
IL-10 [rs1800871] 

 

�� 

 
Yu et al (2013)  

IRS1 [rs1801278] 
�� 
  

Zhang et al (2013)  
MAP3K1 [C-allele of rs889312 and G-allele 
of rs16886165] 


�� 
  

Zheng et al (2014)  

MDM2 [rs2279744] 
�� 
  

Gao et al (2014)  
MDR1 [C3435T] 
�� 

  
Wang et al (2013)  

MTR [A(2756G] 
�� 
�� 
 

Zhong et al (2013)  
PON1 [L55M] 
�� 

  
Saadat et al (2012)  
Pan et al (2019) 

PON1 (Q192R)   
�� Pan et al (2019) 
RAGE (rs1800625) 
��   Xu et al (2019) 
SLC4A7 [rs4973768] 
��   Zhou et al (2023) 
STK15 [F31I] 
�� 

  
Qin et al (2013)  

STK15 [V571I] 
 


�� 
 

Qin et al (2013)  
TCF7L2 [rs7903146] 
�� 

  
Chen et al (2013)  

TERT [rs10069690] 
��   He et al (2019) 
VDR [rs731236] 
�� 

  
Perna et al (2013)  

VDR [rs2228570] 
�� 
  

Zhang et al (2014)  
VEGF [C936T] 

 

�� 

 
Li et al (2015)  

XRCC2 [R188H] 
 


�� 
 

He et al (2014)  
XRCC3 [A17893G] 

  

�� He et al (2012)  

XRCC3 [T241M] 
�� 
  

He et al (2012)  



 

 
6 

XRCC3 [rs1799794] 
��   Niu et al (2021) 
XRCC3 [rs1799796]   
�� Niu et al (2021) 

SNV: single nucleotide variant. 
a Forty ATR and 50 CHEK1 SNVs genotyped. 
b Thirty-four SNVs and groups of SNVs genotyped in 8 chemokine candidate genes: CCL3, CCL4, CCL5, CCL20, CCR5, CCR6, CXCL12, 
and CXCR4. 
c Three hundred eighty-four SNVs genotyped in FGFR1, FGFR3, FGFR4, and FGFRL1. 
 
Primary Studies  
Many more genetic risk markers remain to be discovered because substantial unexplained 
heritability remains.(82) Michailidou et al (2013), researchers from the Collaborative 
Oncological Gene-Environment Study group, a mega-consortium established to follow-up 
previous GWAS and candidate gene association studies, identified 41 additional SNVs 
associated with breast cancer and estimated that “more than 1000 additional loci are involved 
in breast cancer susceptibility.”(43) One reason more genetic associations have not been 
found is that even large GWAS are underpowered to detect uncommon genetic variants.(83) 
As the cost of whole-genome sequencing continues to decrease, some predict that this will 
become the preferred avenue for researching risk variants. 
  
Reeves et al (2010) evaluated the performance of a panel of seven SNVs associated with 
breast cancer in 10,306 women with breast cancer and 10,383 without cancer in the U.K.(84) 
The risk panel also contained five SNVs included in the deCODE Breast Cancer test and used 
a similar multiplicative approach. Sensitivity studies were performed using four SNVs and 
using ten SNVs, both demonstrating no significant change in performance. Although the risk 
score showed marked differences in risk between the upper quintile of patients (8.8% 
cumulative risk to age 70 years) and the lower quintile of patients (4.4%), these changes were 
not viewed as clinically useful when compared with patients with an estimated overall 
background risk of 6.3%. Simple information on patient histories was noted; e.g., the presence 
of first or second first-degree relatives with breast cancer provided equivalent or superior risk 
discrimination (9.1% and 15.4%, respectively). 
 
Pharoah et al (2008) considered a combination of seven well-validated SNVs associated with 
breast cancer, five of which are included in the deCODE Breast Cancer test.(85) A model that 
simply multiplies the individual risks of the seven common SNVs was assumed; such a model 
would explain approximately 5% of the total genetic risk of nonfamilial breast cancer. Applying 
the model to the population of women in the U.K., the risk profile provided by the seven SNVs 
did not provide sufficient discrimination between those who would and would not experience 
future breast cancer to enable individualized preventive treatment, such as tamoxifen. 
However, the authors suggested that a population screening program could be personalized 
with results of SNV panel testing. They concluded that no women would be included in the 
high-risk category (defined as 20% risk within the next ten years at age 40 to 49 years, 
according to the National Institute for Health and Care Excellence), and therefore none would 
warrant the addition of magnetic resonance imaging screening or consideration of more 
aggressive intervention. 
 
BREVAGen and BREVAGenplus (previous versions of GeneType) 
A study by Allman et al (2015) included 7539 African American and 3363 Hispanic women 
from the Women’s Health Initiative.(86) Adding a risk score based on over 70 susceptibility loci 
improved risk prediction by about 10% to 19% over the Gail model and 18% to 26% over the 
International Breast Cancer Intervention Study risk prediction for African Americans and 
Hispanics, respectively.  
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Dite et al (2013) published a similar case-control study of the same seven SNVs, assuming the 
same multiplicative model (based on the independent risks of each SNV).(87) The predictive 
ability of the Gail model with and without the seven SNV panel was compared in 962 case 
patients and 463 controls, all 35 years of age or older (mean age, ≈45 years). The area under 
the curve (AUC) of the Gail model was 0.58 (95% confidence interval [CI], 0.54 to 0.61); in 
combination with the 7-SNV panel, AUC increased to 0.61 (95% CI, 0.58 to 0.64; p<0.001). In 
reclassification analysis, 12% of cases and controls were correctly reclassified, and 9% of 
cases and controls were incorrectly reclassified when the 7-SNV panel was added to the Gail 
model. Risk classes were defined by 5-year risk of developing breast cancer (<1.5%, ≥1.5% to 
<2.0%, and ≥2.0%). Although the addition of the 7-SNV panel to the Gail model improved 
predictive accuracy, the magnitude of improvement was small, overall accuracy moderate, and 
impact on health outcomes uncertain. 
 
Mealiffe et al (2010) published a clinical validation study of the BREVAGen test.(88) The 
authors evaluated a 7-SNV panel in a nested case-control cohort of 1664 case patients and 
1636 controls. A model that multiplied the individual risks of the seven SNVs was assumed, 
and the resulting genetic risk score was assessed as a potential replacement for or add-on test 
to the Gail clinical risk model. The net reclassification improvement was used to evaluate 
performance. Combining seven validated SNVs with the Gail model resulted in a modest 
improvement in classification of breast cancer risks, but the AUC only increased from 0.557 to 
0.594 (0.50 represents no discrimination, 1.0 perfect discrimination). The impact of 
reclassification on the net health outcome was not evaluated. The authors suggested that the 
best use of the test might be in patients who would benefit from enhanced or improved risk 
assessment (e.g., those classified as intermediate risk by the Gail model). 
  
Other Clinical Genetic Tests  
Curtit et al (2017) analyzed 8703 patients with early breast cancer who were in prospective 
case cohorts (SIGNAL and PHARE).(89) The primary aim was to identify associations between 
a 94-SNV risk score, drawn from previous literature, and invasive disease-free survival. 
Patients in different quartiles of the 94-SNV risk score were assessed for invasive disease-free 
survival and overall survival but showed no significant difference between groups (invasive 
disease-free survival hazard ratio, 0.993; 95% CI, 0.981 to 1.005; p=0.26). Prognostic factors 
such as age at diagnosis, size of tumor, and metastasis status did not correlate with the risk 
score, which further did not distinguish between the 3 breast cancer subtypes represented in 
this analysis (triple-negative, human epidermal growth factor receptor [HER] 2-positive, and 
hormone receptor-positive HER 2-negative). 
 
Mavaddat et al (2015) reported a multicenter study that assessed risk stratification using 77 
breast cancer associated SNVs in 33,673 breast cancer cases and 33,381 control women of 
European descent.(90) Polygenic risk scores were developed based on an additive model plus 
pairwise interactions between SNVs. Women in the highest 1% of the polygenic risk score had 
a 3-fold increased risk of developing breast cancer compared with women in the middle 
quintile (odds ratio [OR], 3.36; 95% CI, 2.95 to 3.83). The lifetime risk of breast cancer was 
16.6% for women in the highest quintile of the risk score and 5.2% for women in the lowest 
quintile. The discriminative accuracy was 0.622 (95% CI, 0.619 to 0.627).  
 
Other large studies have evaluated 8 to 18 common, candidate SNVs in breast cancer cases 
and normal controls to determine whether breast cancer assessments based on clinical factors 
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plus various SNV combinations were more accurate than risk assessments based on clinical 
factors alone.  
 
• Armstrong et al (2013) examined the impact of pretest breast cancer risk prediction on the 

classification of women with an abnormal mammogram above or below the risk threshold 
for biopsy.(91) Currently, 1-year probability of breast cancer among women with Breast 
Imaging-Reporting and Data System (BIRADS) category 3 mammograms is 2%; these 
women undergo 6-month follow-up rather than biopsy. In contrast, women with BIRADS 
category 4 mammograms have a 6% (BIRADS category 4A) or greater (BIRADS categories 
4B and 4C) probability of developing breast cancer in 1 year; these women are referred for 
biopsy. Using the Gail model plus 12 SNVs for risk prediction and a 2% biopsy risk 
threshold, 8% of women with BIRADS category 3 mammograms were reclassified above 
the threshold for biopsy, and 7% of women with BIRADS category 4A mammograms were 
reclassified below the threshold. The greatest impact on reclassification was attributed to 
standard breast cancer risk factors. The net health outcome was not compared between 
women who were reclassified and those who were not. 

• Darabi et al (2012) investigated the performance of 18 breast cancer risk SNVs, together 
with mammographic percentage density, BMI, and clinical risk factors in predicting absolute 
risk of breast cancer, empirically, in a well-characterized case-control study of 
postmenopausal Swedish women.(92) Performance of a risk prediction model based on an 
initial set of 7 breast cancer risk SNVs was improved by including 11 more recently 
established breast cancer risk SNVs (p<0.001). Adding mammographic percentage density, 
BMI and all 18 SNVs to a modified Gail model improved the discriminatory accuracy (the 
AUC statistic) from 55% to 62%. The net reclassification improvement was used to assess 
improvement in classification of women into 5-year low-, intermediate-, and high-risk 
categories (p<0.001). It was estimated that using an individualized screening strategy 
based on risk models incorporating clinical risk factors, mammographic density, and SNVs, 
would capture 10% more cases. Impacts on the net health outcome from such a change 
are unknown. 

• Campa et al (2011) found no evidence that the 17 SNV breast cancer susceptibility loci 
modified the associations between established risk factors and breast cancer.(93) 

• Zheng et al (2010) found that eight SNVs, combined with other clinical predictors, were 
significantly associated with breast cancer risk; the full model gave an AUC of 0.63.(94) 

• Wacholder et al (2010) evaluated the performance of a panel of ten SNVs associated with 
breast cancer that had, at the time of the study, been validated in at least three published 
GWAS.(95) Cases (n=5590) and controls (n=5998) from the National Cancer Institute’s 
Cancer Genetic Markers of Susceptibility GWAS of breast cancer were included in the 
study (women of primarily European ancestry). The SNV panel was examined as a risk 
predictor alone and in addition to readily available components of the Gail model (e.g., 
diagnosis of atypical hyperplasia was not included). The authors found that adding the SNV 
panel to the Gail model resulted in slightly better stratification of a woman’s risk than either 
the SNV panel or the Gail model alone but that this stratification was inadequate to inform 
clinical practice. For example, only 34% of the women who had breast cancer were 
assigned to the top 20% risk group. The area under the curve for the combined SNV and 
Gail model was 62% (50% is random, 100% is perfect). 

 
Although results of these studies support the concept of clinical genetic tests, they do not 
represent direct evidence of their clinical validity or utility. 
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Clinically Useful  
A test is clinically useful if the results lead to management decisions that improve the net 
health outcome of care. The net health outcome can be improved if patients receive correct 
therapy, or more effective therapy, or avoid testing.  
 
Direct Evidence  
Direct evidence of clinical utility is provided by studies that have compared health outcomes for 
patients managed with and without the test. Because these are intervention studies, the 
preferred evidence would be from randomized controlled trials. 
  
No randomized controlled trials evaluating the clinical utility of SNV panel testing to predict the 
risk of breast cancer were identified.  
 
Chain of Evidence  
Indirect evidence on clinical utility rests on clinical validity. If the evidence is insufficient to 
demonstrate test performance, no inferences can be made about clinical utility. 
 
One potential use of SNV testing is to evaluate the risk of breast cancer for chemoprevention. 
Cuzick et al (2017) assessed whether a panel of 88 SNVs could improve risk prediction over 
traditional risk stratification using data from two randomized tamoxifen prevention trials.(96) 
The study included 359 cases and 636 controls, with the 88 SNVs assessed on an Illumina 
OncoArray that evaluated approximately half a million SNVs. The primary outcome was breast 
cancer or ductal carcinoma in situ. The 88 SNV score improved discriminability above the 
Tyrer-Cuzick risk evaluator; however, there was a modest improvement in the percentage of 
women who were classified as high risk. The percentage of women with a 10-year risk of 
recurrence of 8% or more was estimated to be 18% for Tyrer-Cuzick and 21% when the 88 
SNV score was added. The SNV score did not predict which women would benefit from 
tamoxifen. 
 
McCarthy et al (2015) examined the impact of BMI, Gail model risk, and a 12-SNV version of 
the deCODE Breast Cancer test on breast cancer risk prediction and biopsy decisions among 
women with BI-RADS category 4 mammograms who had been referred for biopsy 
(N=464).(97) The original deCODE Breast Cancer panel included 7 SNVs; neither panel is 
currently commercially available. The mean patient age was 49 years, 60% were white, and 
31% were black. In multivariate regression models that included age, BMI, Gail risk factors, 
and SNV panel risk as a continuous variable, a statistically significant association between 
SNV panel risk and breast cancer diagnosis was observed (odds ratio, 2.30; 95% CI, 1.06 to 
4.99; p=0.035). However, categorized SNV panel risks (e.g., relative increase or decrease in 
risk compared with the general population), resembling how the test would be used in clinical 
practice, were not statistically associated with breast cancer diagnosis. In subgroups defined 
by Black or White race, SNV panel risk also was not statistically associated with breast cancer 
diagnosis. Risk estimated by a model that included age, Gail risk factors, BMI, and the SNV 
panel, reclassified 9 (3.4%) women below a 2% risk threshold for biopsy, none of whom were 
diagnosed with cancer. 
 
Bloss et al (2011) reported on the psychological, behavioral, and clinical effects of risk 
scanning in 3639 patients followed for a short time (mean, 5.6 months).(98) These 
investigators evaluated anxiety, intake of dietary fat, and exercise based on information from 
genomic testing. There were no significant changes before and after testing and no increase in 
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the number of screening tests obtained in enrolled patients. Although more than half of 
patients participating in the study indicated an intent to undergo screening in the future, during 
the study itself, no actual increase was observed.  
 
Section Summary: Single Nucleotide Variants and Average Breast Cancer Risk  
Common SNVs have been shown in meta-analyses and primary studies to be significantly 
associated with breast cancer risk; some SNVs convey slightly elevated risk compared with the 
general population risk. Estimates of breast cancer risk, based on SNVs derived from large 
GWAS and/or from SNVs in other genes known to be associated with breast cancer, are 
available as a laboratory-developed test service. The literature on these associations is 
growing, although information about the risk models is proprietary. Available data would 
suggest that GeneType may add predictive accuracy to clinical risk prediction t However, the 
degree of improved risk prediction may be modest, and clinical implications are unclear. Other 
panel tests have fewer data to support conclusions about their clinical validity. Independent 
determination of clinical validity in an intended-use population has not been performed. Use of 
such risk panels for individual patient care or population screening programs is premature 
because (1) performance of these panels in the intended-use populations is uncertain, and (2) 
most genetic breast cancer risk has yet to be explained by undiscovered gene variants and 
SNVs. The number of common low-penetrance SNVs associated with breast cancer is rapidly 
increasing. No studies were identified that provide direct evidence that use of SNV-based risk 
assessment has any impact on healthcare outcomes in this population. Indirect evidence from 
an improvement in risk prediction with an 88 SNV panel has been reported, although the 
improvement in risk prediction is modest. For the specific loci evaluated by the most recent 
GeneType test, there is insufficient evidence to determine whether using breast cancer risk 
estimates in asymptomatic individuals changes management decisions and improves patient 
outcomes. 
 
SUMMARY OF EVIDENCE 
For individuals who are asymptomatic and at average risk of breast cancer by clinical criteria 
testing for common SNVs associated with a small increase in the risk of breast cancer, only 
observational studies exist. Relevant measures are test validity, morbid events, and quality of 
life. Although clinical genetic tests may improve the predictive accuracy of current clinical risk 
predictors. However, the magnitude of improvement is small, and clinical significance is 
uncertain. Moreover, it is not known whether the potential harms of these tests due to false-
negative and false-positive results are outweighed by the potential benefit associated with 
improved risk assessment is unknown. Evaluation of this technology is further complicated by 
the rapidly increasing numbers of SNVs associated with a small risk of breast cancer. Long-
term prospective studies with large sample sizes are needed to determine the clinical validity 
and utility of SNV-based models for predicting breast cancer risk. The discriminatory ability 
offered by the genetic factors currently known is insufficient to inform clinical practice. The 
evidence is insufficient to determine that the technology results in an improvement in the net 
health outcome. 
 
 
Supplemental Information 
 
PRACTICE GUIDELINES AND POSITION STATEMENTS 
  
American Society of Clinical Oncology  



 

 
11 

In the 2015 guidelines on genetic and genomic testing for cancer susceptibility, the American 
Society of Clinical Oncology(ASCO) acknowledges the role of multi-panel gene testing for 
high-penetrance genes of established clinical utility; however, "panel testing may identify 
mutations in genes associated with moderate or low cancer risks" and "testing will also identify 
variants of uncertain significance in a substantial proportion of patient cases."(99) 
 
National Comprehensive Cancer Network  
In its guidelines on genetic or familial high-risk assessment of breast, ovarian and pancreatic 
cancers, the National Comprehensive Cancer Network notes the potential for multigene testing 
to identify intermediate penetrance (moderate risk) genes, but adds that “For many of these 
genes, there are limited data on the degree of cancer risk and there may currently be no clear 
guidelines on risk management for carriers of pathogenic/likely pathogenic variants. Not all 
genes included on available multi-gene tests will change risk management compared to that 
based on other risk factors such as family history.” The guideline also includes that there are 
"significant limitations" in the interpretation of polygenic risk scores, and that polygenic risk 
scores should not be used for clinical management at this time.(100)   
 
U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATIONS  
No U.S. Preventive Services Task Force recommendations for single nucleotide variant testing 
either in conjunction with or without consideration of clinical factors to predict breast cancer 
risk have been identified. 
 
Ongoing and Unpublished Clinical Trials 
Some currently ongoing and unpublished trials that might influence this review are listed in 
Table 2. 
 
Table 2. Summary of Key Trials 
 
NCT No. 

 
Trial Name 

Planned 
Enrollment 

Completion 
Date 

Ongoing 
   

NCT02620852a Enabling a Paradigm Shift: A Preference-Tolerant RCT of 
Personalized vs. Annual Screening for Breast Cancer 
(WISDOM) 

100,000 Oct 2025 

NCT04474834 GENetic Risk Estimation of Breast Cancer Prior to Decisions 
on Preventive Therapy Uptake, Risk Reducing Surgery or 
Intensive Imaging Surveillance. A Study to Determine if a 
Polygenic Risk Score Influences the Decision Making Options 
Amongst High Risk Women (GENRE2) 

900 Dec 20209 

NCT05755269 Genetic Risk Estimation in Breast Cancer and Assessing 
Health Disparities 

50 Jan 2033 

NCT: national clinical trial. 
aDenotes an industry sponsored or cosponsored trial 
 
 
Government Regulations 
National: 
There is no national coverage determination. 
 
Local:  
There is no local coverage determination 
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(The above Medicare information is current as of the review date for this policy. However, the coverage issues 
and policies maintained by the Centers for Medicare & Medicare Services [CMS, formerly HCFA] are updated 
and/or revised periodically. Therefore, the most current CMS information may not be contained in this 
document. For the most current information, the reader should contact an official Medicare source.) 
 
 
Related Policies 
 
• CPT Category III Codes – Noncovered Services 
• Genetic Cancer Susceptibility Panels Using Next Generation Sequencing  
• Genetic, Molecular and Other Tests – Experimental/Investigational Status  
• Genetic Testing - Carrier Screening for Genetic Diseases 
• Genetic Testing - Expanded Molecular Panel Testing of Cancers to Identify Targeted 

Therapies 
• Genetic Testing and Counseling 
• Genetic Testing for CHEK2 Mutations for Breast Cancer 
• Genetic Testing for Hereditary Breast and/or Ovarian Cancer Syndrome (BRCA1/BRCA2), 

Including Multigene Panels 
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BLUE CARE NETWORK BENEFIT COVERAGE 

POLICY:  GENETIC TESTING (SINGLE NUCLEOTIDE VARIANTS) TO PREDICT RISK OF 
NONFAMILIAL BREAST CANCER 

 
I. Coverage Determination: 

 
Commercial HMO 
(includes Self-Funded 
groups unless otherwise 
specified) 

Not covered 

BCNA (Medicare 
Advantage) 

Refer to the Medicare information under the Government 
Regulations section of this policy. 

BCN65 (Medicare 
Complementary) 

Coinsurance covered if primary Medicare covers the 
service.  

 
 

II. Administrative Guidelines:   
 

• The member's contract must be active at the time the service is rendered. 
• Coverage is based on each member’s certificate and is not guaranteed. Please 

consult the individual member’s certificate for details. Additional information 
regarding coverage or benefits may also be obtained through customer or provider 
inquiry services at BCN. 

• The service must be authorized by the member's PCP except for Self-Referral 
Option (SRO) members seeking Tier 2 coverage. 

• Services must be performed by a BCN-contracted provider, if available, except for 
Self-Referral Option (SRO) members seeking Tier 2 coverage. 

• Payment is based on BCN payment rules, individual certificate and certificate riders. 
• Appropriate copayments will apply. Refer to certificate and applicable riders for 

detailed information. 
• CPT - HCPCS codes are used for descriptive purposes only and are not a 

guarantee of coverage. 
• Duplicate (back-up) equipment is not a covered benefit. 
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