Title: Orthopedic Applications of Stem-Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow)

Description/Background

MESENCHYMAL STEM CELLS
Mesenchymal stem cells (MSCs) are multipotent cells (also called multipotent stromal cells) that can differentiate into various tissues including organs, trabecular bone, tendon, articular cartilage, ligaments, muscle, and fat. MSCs are associated with the blood vessels within the bone marrow, synovium, fat, and muscle, where they can be mobilized for endogenous repair as occurs with the healing of bone fractures. Tissues, such as cartilage, tendon, ligaments, and vertebral discs, show limited capacity for endogenous repair because of the limited presence of the triad of functional tissue components: vasculature, nerves, and lymphatics. Orthobiologics is a term introduced to describe interventions using cells and biomaterials to support healing and repair. Cell therapy is the application of MSCs directly to a musculoskeletal site. Tissue engineering techniques use MSCs and/or bioactive molecules such as growth factors and scaffold combinations to improve the efficiency of repair or regeneration of damaged musculoskeletal tissues.¹

Bone marrow aspirate is considered the most accessible source and, thus, the most common place to isolate MSCs for treatment of musculoskeletal disease. However, harvesting MSCs from bone marrow requires a procedure that may result in donor-site morbidity. Also, the number of MSCs in bone marrow is low, and the number and differentiation capacity of bone marrow-derived MSCs decreases with age, limiting their efficiency when isolated from older patients.

In vivo, the fate of stem cells is regulated by signals in the local 3-dimensional microenvironment from the extracellular matrix and neighboring cells. It is believed the success of tissue engineering with MSCs will also require an appropriate 3-dimensional scaffold or matrix, culture conditions for tissue-specific induction, and implantation techniques that provide
appropriate biomechanical forces and mechanical stimulation. The ability to induce cell division and differentiation without adverse effects, such as the formation of neoplasms, remains a significant concern. Given that each tissue type requires different culture conditions, induction factors (signaling proteins, cytokines, growth factors), and implantation techniques, each preparation must be individually examined.

This policy does not address unprocessed allograft bone.

Regulatory Status:

The U.S. Food and Drug Administration (FDA) regulates human cells and tissues intended for implantation, transplantation, or infusion through the Center for Biologics Evaluation and Research, under Code of Federal Regulation (CFR) title 21, parts 1270 and 1271. MSCs are included in these regulations.

The regulatory status of the stem cell or stem cell-containing products addressed in this review is summarized below.

Concentrated autologous MSCs do not require approval by FDA. No products using engineered or expanded MSCs have been approved by FDA for orthopedic applications.

The following products are examples of demineralized bone matrix (DBM) products. They are marketed as containing viable stem cells. In some instances, manufacturers have received communications and inquiries from the FDA related to the appropriateness of their marketing products that are dependent on living cells for their function. The following descriptions are from product literature.

- **AlloStem®** (AlloSource) is a partially demineralized allograft bone seeded with adipose-derived MSCs.
- **Map3®** (RTI Surgical) contains cortical cancellous bone chips, DBM, and cryopreserved multipotent adult progenitor cells (MAPC®).
- **Osteocel Plus®** (NuVasive) is a DBM combined with viable MSCs isolated from allogeneic bone marrow.
- **Trinity Evolution Matrix™** (Orthofix) is a DBM combined with viable MSCs isolated from allogeneic bone marrow.
- **Other products contain DBM alone and are designed to be mixed with bone marrow aspirate:**
 - Fusion Flex™ (Wright Medical) is a dehydrated moldable DBM scaffold (strips and cubes) that will absorb autologous bone marrow aspirate.
 - **Ignite®** (Wright Medical) is an injectable graft with DBM that can be combined with autologous bone marrow aspirate.

A number of DBM combination products have been cleared for marketing by FDA through the 510(k) process. FDA product code: MQV.
Table 1 provides a representative sample of these products; some of which are specifically labeled for mixing with bone marrow aspirate.

Table 1. Demineralized Bone Matrix Products Cleared by FDA

<table>
<thead>
<tr>
<th>Product</th>
<th>Matrix Type</th>
<th>Mix With Autologous MSCs</th>
<th>Manufacturer or Sponsor</th>
<th>Date Cleared</th>
<th>510(k) No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitoss® Bioactive Foam Bone Graft Substitute</td>
<td>Type I bovine collagen</td>
<td>X</td>
<td>Stryker</td>
<td>Nov 2008</td>
<td>K083033</td>
</tr>
<tr>
<td>NanOss BVF-E</td>
<td>Nanocrystalline hydroxyapatite</td>
<td></td>
<td>Pioneer Surgical</td>
<td>Aug 2008</td>
<td></td>
</tr>
<tr>
<td>OrthoBlast® II Demineralized bone matrix putty and paste</td>
<td>Human cancellous bone chips</td>
<td></td>
<td>SeaSpine</td>
<td>Sep 2007</td>
<td>K070751</td>
</tr>
<tr>
<td>CopiOs® Bone Void Filler (sponge and powder disc)</td>
<td>Type I bovine dermal collagen</td>
<td>X</td>
<td>Kensey Nash</td>
<td>May 2007</td>
<td>K071237</td>
</tr>
<tr>
<td>DBX® Demineralized bone matrix putty, paste and mix</td>
<td>Processed human bone particles and sodium hyaluronate</td>
<td>X</td>
<td>Musculoskeletal Transplant Foundation</td>
<td>Dec 2006</td>
<td>K053218</td>
</tr>
<tr>
<td>Integra MOZAIK™ Osteoconductive Scaffold-Putty</td>
<td>Human cancellous bone</td>
<td>X</td>
<td>IsoTis OrthoBiologics</td>
<td>Dec 2006</td>
<td>K062353</td>
</tr>
<tr>
<td>Formagraft™ Collagen Bone Graft Matrix</td>
<td>Bovine fibrillary collagen</td>
<td>X</td>
<td>R and L Medical</td>
<td>May 2005</td>
<td>K050789</td>
</tr>
<tr>
<td>DynaGraft® II Gel and Putty</td>
<td>Processed human bone particles</td>
<td></td>
<td>IsoTis Orthobiologics</td>
<td>Mar 2005</td>
<td>K040419</td>
</tr>
</tbody>
</table>

FDA: Food and Drug Administration; MSCs: mesenchymal stem cells

In 2020, the FDA updated their guidance on "Regulatory Considerations for Human Cells, Tissues, and Cellular and Tissue-Based Products: Minimal Manipulation and Homologous Use."2

Human cells, tissues, and cellular and tissue-based products (HCT/P) are defined as human cells or tissues that are intended for implantation, transplantation, infusion, or transfer into a human recipient. If an HCT/P does not meet the criteria below and does not qualify for any of the stated exceptions, the HCT/P will be regulated as a drug, device, and/or biological product and applicable regulations and premarket review will be required.

An HCT/P is regulated solely under section 361 of the PHS Act and 21 CFR Part 1271 if it meets all of the following criteria:

1) The HCT/P is minimally manipulated;
2) The HCT/P is intended for homologous use only, as reflected by the labeling, advertising, or other indications of the manufacturer’s objective intent;
3) The manufacture of the HCT/P does not involve the combination of the cells or tissues with another article, except for water, crystalloids, or a sterilizing, preserving, or storage agent,
provided that the addition of water, crystalloids, or the sterilizing, preserving, or storage agent does not raise new clinical safety concerns with respect to the HCT/P; and
4) Either:
 i) The HCT/P does not have a systemic effect and is not dependent upon the metabolic activity of living cells for its primary function; or
 ii) The HCT/P has a systemic effect or is dependent upon the metabolic activity of living cells for its primary function, and: a) Is for autologous use; b) Is for allogeneic use in a first-degree or second-degree blood relative; or c) Is for reproductive use."

The FDA does not consider the use of stem cells for orthopedic procedures to be homologous use.

Medical Policy Statement

Mesenchymal stem cell therapy is considered experimental/investigational for all orthopedic applications, including use in repair or regeneration of musculoskeletal tissue.

Allograft bone products containing viable stem cells, including but not limited to demineralized bone matrix (DBM) with stem cells, are considered experimental/investigational for all orthopedic applications.

Allograft or synthetic bone graft substitutes that must be combined with autologous blood or bone marrow are considered experimental/investigational for all orthopedic applications.

The safety and efficacy of these treatments have not been established.

Inclusionary and Exclusionary Guidelines (Clinically based guidelines that may support individual consideration and pre-authorization decisions)

N/A

CPT/HCPCS Level II Codes (Note: The inclusion of a code in this list is not a guarantee of coverage. Please refer to the medical policy statement to determine the status of a given procedure)

Established codes:
N/A

Other codes (investigational, not medically necessary, etc.):
20930 20931 20999 20939
0565T 0566T

Note: Individual policy criteria determine the coverage status of the CPT/HCPCS code(s) on this policy. Codes listed in this policy may have different coverage positions (such as established or experimental/investigational) in other medical policies.
Rationale

Evidence reviews assess the clinical evidence to determine whether the use of a technology improves the net health outcome. Broadly defined, health outcomes are length of life, quality of life (QOL), and ability to function including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance, and quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The RCT is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

CARTILAGE DEFECTS

Clinical Context and Therapy Purpose

The purpose of stem cell therapy is to provide a treatment option that is an alternative to or an improvement on existing therapies in patients with osteoarthritis (OA) or focal cartilage defects.

The question addressed in this evidence review: Is stem cell therapy associated with improved health outcomes for patients with cartilage defects?

The following PICO was used to select literature to inform this review.

Populations
The relevant population of interest is individuals with OA or focal cartilage defects.

Interventions
The therapy being considered is treatment with mesenchymal stem cells (MSCs).

Comparators
Comparators of interest include conservative management with medication or hyaluronic acid (HA) injection, microfracture, and autologous chondrocyte implantation.

Outcomes
The general outcomes of interest are symptoms, morbid events, functional outcomes, QOL, and treatment-related morbidity (TRM). Specific scales may include the:
• Knee Injury and Osteoarthritis Outcome Score (KOOS; 5 subscales with 0-100 scale),
• Lysoelm Knee Scale (LKS) score (0-100 scale),
• Tegner Activity Score (TAS); a visual analog scale (VAS) for pain (0-100 mm or 0-10 cm scale),
• Western Ontario and McMaster Universities Arthritis Index (WOMAC) which has 3 subscores: pain, which includes 5 items; stiffness, with 2 items; and physical function, with 17 items.
• WOMAC response criteria is an improvement of 20% in at least 2 items together with an improvement of 10 points in the overall scale.
• Cartilage is evaluated with the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART, 0-100 points, where higher scores indicate better cartilage repair).
• Follow-up over months to years is of interest for relevant outcomes.

Study Selection Criteria
Methodologically credible studies were selected using the following principles:
• To assess efficacy outcomes, comparative controlled prospective trials were sought, with a preference for RCTs;
• To assess long-term outcomes and adverse events, single-arm studies that capture longer periods of follow-up and/or larger populations were sought.
• Studies with duplicative or overlapping populations were excluded.

Review of Evidence
A systematic review and meta-analysis by Borakati et al (2017) included 15 comparative studies (n=582) on the use of MSCs to treat OA or focal osteochondral lesions.3 The studies (13 published and 2 unpublished data) included 5 RCTs, 1 case-control, and 9 cohort studies. A majority of the studies were conducted in Asia, and the source of the MSCs varied (bone marrow, blood, amniotic fluid, adipose tissue). The largest trial had only 56 participants, giving low statistical power for the individual studies. The overall quality of the evidence was considered low, with 3 studies rated as "satisfactory" and the rest rated "poor" on the Jadad scale. Pain assessment results were noted for each of the controlled studies, resulting in a pooled standardized mean difference of -1.27 (95% confidence interval, -1.95 to -0.58) in favor of the group treated with MSCs. Reviewers reported a Z-statistic effect size of 3.62, again in favor of the groups treated with MSCs (p<0.001); although there was high heterogeneity across controlled studies (I²=92%). There was also suggestion of publication bias; the investigators found 79 trials on clinicaltrials.gov, of which only 3 were listed as 'complete with results,' many trials had been inactive for several years, and 9 had 'unknown' status.

A systematic review and meta-analysis by Maheshwer et al (2020) identified 25 studies with 439 participants that used MSCs for treatment of OA.4 Although 13 studies were considered level I RCTs by the authors (range of 7 to 40 participants), low quality RCTs would normally be downgraded to level II. Meta-analysis suggested improvement in self-reported pain. Few studies reported on cartilage quality. Most of the studies were rated as poor or fair quality. Conclusions are limited due to substantial variability in MSC source, preparation, and concentration in the current literature.

A more focused systematic review and meta-analysis of 6 RCTs (203 patients) that evaluated cultured MSCs for OA was reported by Kim et al (2020).5 Four of the studies used bone-marrow derived MSCs, 1 used adipose-derived cells and the other cultured placental cells.
Only 2 of the 6 studies were rated as low risk of bias. Pain outcomes measured with VAS and WOMAC pain scales were improved at 6 to 12 months, but there was no significant improvement in measures of WOMAC function or cartilage measured by magnetic resonance imaging.

The source of MSCs may have an impact on outcomes, but this is not well-understood, and the available literature uses multiple sources of MSCs. Because of the uncertainty over whether these products are equivalent, the evidence is grouped by the source of MSC.

Mesenchymal Stem Cells Expanded from Bone Marrow

Autologous Bone Marrow

Wakitani et al (2002) first reported on the use of expanded MSCs for repair of cartilage defects. Cells from bone marrow aspirate of 12 patients with osteoarthritic knees were culture-expanded, embedded in collagen gel, transplanted into the articular cartilage defect, and covered with autologous periosteum at the time of high tibial osteotomy. Clinical improvement did not differ between the experimental group and a group of 12 control patients who underwent high tibial osteotomy alone. Wakitani et al (2007) have since published several cases of patients treated for isolated cartilage defects, with clinical improvement reported at up to 27 months. However, most of the defects appear to have been filled with fibrocartilage. A report from Wakitani et al (2011) was a follow-up safety study of 31 of the 41 patients (3 patients had died, 5 had undergone total knee arthroplasty) who had received MSCs for articular cartilage repair in their clinics between 1998 and 2008. At a mean of 75 months (range, 5-137 months) since the index procedure, no tumors or infections were identified. Functional outcomes were not reported.

A publication from Centeno et al (2010) of Regenerative Sciences in the United States described the use of percutaneously injected culture-expanded MSCs obtained from the iliac spine in 226 patients. Following harvesting, cells were cultured with autologous platelet lysate and reinjected under fluoroscopic guidance into peripheral joints (n=213) or intervertebral discs (n=13). Culture-expanded MSCs requires approval by the U.S. Food and Drug Administration (FDA) and is no longer offered in the United States.

The largest study included in the systematic review by Borakati et al (2017) was by Wong et al (2013), who reported on an RCT of cultured MSCs in 56 patients with OA who underwent medial opening wedge high tibial osteotomy and microfracture of a cartilage lesion (Tables 2 and 3). Patients received an intra-articular injection of MSCs suspended in HA, or for controls, intra-articular injection of HA alone. The primary outcome was the International Knee Documentation Committee (IKDC) score at 6 months, 1 year, and 2 years. Secondary outcomes were the TAS and LKS scores through 2 years and the MOCART scoring system by MRI at 1 year. All patients completed the 2-year follow-up. After adjusting for age, baseline scores, and time of evaluation, the group treated with MSCs showed significantly better scores on the IKDC (mean difference, 7.65 on 0-100 scale; p=0.001), LKS (mean difference, 7.61 on 0-100 scale; p=0.02), and TAS (mean difference, 0.64 on a 0-10 scale; p=0.02) scores. The clinical significance of these differences is uncertain. Blinded analysis of MRI results found higher MOCART scores in the MSC group. The group treated with MSCs had a higher proportion of patients who had complete cartilage coverage of their lesions (32% vs. 0%), greater than 50% cartilage cover (36% versus 14%), and complete integration of the regenerated cartilage (61% versus 14%).
Emadedin et al (2018) reported a triple-blind placebo-controlled phase 1/2 trial of expanded MSCs in 47 patients with OA of the knee.11 Compared to the placebo group, the MSC group showed statistically significant improvements in WOMAC pain and function subscales but not VAS. The WOMAC stiffness subscale improved to a similar extent in the 2 groups. Minimum Clinically Important Improvement and Patient Acceptable Symptom State were not significantly different between the 2 groups. Study limitations included the short duration of follow-up, statistical analysis, and lack of information regarding use of analgesic medications (Tables 4 and 5).

Another phase 1/2 RCT of expanded MSCs was reported by Lamo-Espinosa et al (2016, 2018) in 30 patients with OA of the knee.12,13 Two doses of MSCs (10x106, 100x106) were administered with HA and compared to injection of HA alone. VAS scores were significantly decreased in both MSC groups compared to baseline throughout the 12 months of follow-up, while the decrease in VAS in the control group was not statistically significant. Similarly, total WOMAC scores were statistically decreased only in the high dose group at 12 months. Four-year follow-up was available for 27 of the 30 participants. Two patients in the control group and 1 patient in the low dose group had undergone total knee arthroplasty. VAS scores group were higher than at baseline in the HA control but remained low in the 2 MSC groups. WOMAC scores at the long-term follow-up showed a similar course (Table 3). Limitations of this study are described in Tables 4 and 5.

Table 2. Summary of Key RCT Characteristics

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wong et al (2013)10</td>
<td>Asia</td>
<td>1</td>
<td></td>
<td>Patients with OA who underwent HTO and Microfracture (n=56)</td>
<td>Microfracture followed by expanded MSCs suspended in HA</td>
<td>Microfracture plus HA alone</td>
</tr>
<tr>
<td>Emadedin et al (2018)11</td>
<td>Iran</td>
<td>1</td>
<td>2012-2016</td>
<td>Patients who met the ACR clinical and radiological criteria for knee OA (n=47)</td>
<td>40x106 expanded MSCs with serum albumin (n=22)</td>
<td>Placebo (n=25)</td>
</tr>
<tr>
<td>Lamo-Espinosa et al (2016, 2018)12,13</td>
<td>Spain</td>
<td>2</td>
<td>2012-2014</td>
<td>Patients who met the ACR clinical and radiological criteria for knee OA (n=30)</td>
<td>One of 2 doses of expanded MSCs with HA 10x106, 100x106</td>
<td>HA alone</td>
</tr>
</tbody>
</table>

ACR: American College of Rheumatology; HA: hyaluronic acid; HTO: high tibial osteotomy; MSC: mesenchymal stem cell; OA: osteoarthritis; RCT: randomized controlled trial.

Table 3. Summary of Key RCT Results

<table>
<thead>
<tr>
<th>Study</th>
<th>IKDC at 6 mo</th>
<th>IKDC at 2 yr</th>
<th>Tegner Activity Scale at 2 yr</th>
<th>Lysoilm Knee Score at 2 yr</th>
<th>MOCART</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wong et al (2013)10</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>N</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Diff (95% CI)</td>
<td>-25.7(-35.4 to 16)</td>
<td>-35(-44.9 to 25)</td>
<td>-16.9(-30.4 to 3.5)</td>
<td>-22.9(-32.9 to 12.9)</td>
<td>-20.8 (-34.5 to 7.1)</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.001</td>
<td>0.021</td>
<td>0.016</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Emadedin et al (2018)11</td>
<td>WOMAC Total</td>
<td>WOMAC Pain</td>
<td>WOMAC Stiffness</td>
<td>WOMAC Function</td>
<td>VAS</td>
</tr>
<tr>
<td>N</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Diff (95% CI)</td>
<td>-13.5(-24.3 to 2.7)</td>
<td>-21.8(-33.8 to 9.9)</td>
<td>-7.4 (-25.4 to 10.5)</td>
<td>-11.3(-22.1 to 0.4)</td>
<td>-5(-28.1 to 18)</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.01</td>
<td>0.001</td>
<td>0.40</td>
<td>0.04</td>
<td>0.65</td>
</tr>
<tr>
<td>Effect size (95% CI)</td>
<td>0.7(0.1 to 1.4)</td>
<td>1.1(0.4 to 1.7)</td>
<td>0.6(0.03 to 1.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamo-Espinosa et al (2016, 2018)12,13</td>
<td>WOMAC Total at 12 mo, median (IQR)</td>
<td>WOMAC Total at 4 yr, median (IQR)</td>
<td>VAS at 4 yr, median (IQR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>21.5 (15, 26)</td>
<td>17 (13, 25.5)</td>
<td>2 (2, 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diff (95% CI)</td>
<td>-4.1 (-16.0 to 7.8)</td>
<td>-5.0(-15.0 to 5.0)</td>
<td>-2.7 (-13.2 to 7.8)</td>
<td>-1.3(-15.5 to 12.9)</td>
<td>-1.0(-16.0 to 13.0)</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.007</td>
<td>0.011</td>
<td>0.21</td>
<td>0.42</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Table 4. Relevance Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wong et al (2013)</td>
<td>4. The population was restricted to patients younger than 55</td>
<td>4. The intervention included microfracture with/without stem cells</td>
<td>2. Did not use an active control and use of analgesics was not reported</td>
<td>1. Evaluation of cartilage was not performed.</td>
<td>1, 2. Follow-up was reported out to 6 mo.</td>
</tr>
<tr>
<td>Emadedin et al (2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamo-Espinosa et al (2016, 2018)</td>
<td>1. Evaluation of cartilage was not performed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

- **Population key:** 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.
- **Intervention key:** 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.
- **Comparator key:** 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.
- **Outcomes key:** 1. Key health outcomes not addressed; 2. Physiologic measures, not validated surrogates; 3. No CONSORT reporting of harms; 4. Not establish and validated measurements; 5. Clinical significant difference not prespecified; 6. Clinical significant difference not supported.
- **Follow-Up key:** 1. Not sufficient duration for benefit; 2. Not sufficient duration for harms.

Table 5. Study Design and Conduct Limitations

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation</th>
<th>Blinding</th>
<th>Selective Reporting</th>
<th>Data Completeness</th>
<th>Power</th>
<th>Statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wong et al (2013)</td>
<td>3. Patients selected from 1 of 2 identical envelopes</td>
<td>1,2,3. Not blinded except for evaluation of MRI</td>
<td></td>
<td></td>
<td>1. The authors used non-inferiority compared to placebo and chi-square tests for continuous variables</td>
<td></td>
</tr>
<tr>
<td>Emadedin et al (2018)</td>
<td></td>
<td></td>
<td>3. Details of power analysis were not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamo-Espinosa et al (2016, 2018)</td>
<td>1,2,3. Not blinded</td>
<td></td>
<td>3. Details of power analysis were not reported</td>
<td></td>
<td>1. The authors used nonparametric tests for within-group comparisons rather than tests for repeated measures</td>
<td></td>
</tr>
</tbody>
</table>

The study limitations stated in this table are those notable in the current review; this is not a comprehensive limitations assessment.

- **Allocation key:** 1. Participants not randomly allocated; 2. Allocation not concealed; 3. Allocation concealment unclear; 4. Inadequate control for selection bias.
- **Blinding key:** 1. Not blinded to treatment assignment; 2. Not blinded outcome assessment; 3. Outcome assessed by treating physician.
- **Selective Reporting key:** 1. Not registered; 2. Evidence of selective reporting; 3. Evidence of selective publication.
- **Data Completeness key:** 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).
- **Power key:** 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.
- **Statistical key:** 1. Analysis is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Analysis is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.
Mesenchymal Stem Cells from Allogeneic Bone Marrow
Vega et al (2015) reported a small phase 1/2 RCT of 30 patients with OA unresponsive to conventional treatments. The MSC-treated group received an intra-articular injection of expanded allogeneic bone marrow MSCs from healthy donors, and the control group received an intra-articular injection of HA. Follow-up using standard outcome measures was performed at 3, 6, and 12 months post-injection. In the MSC-treated group, pain scores (VAS and WOMAC) decreased significantly between baseline and the 12-month follow-up, whereas pain scores in the control group did not improve significantly. A significant improvement in cartilage quality in the MSC group was supported by T2 MRI. Not reported was whether the patients or assessors were blinded to treatment.

Mesenchymal Stem Cells from Bone Marrow Aspirate Concentrate
Shapiro et al (2017) reported on the results of a prospective, single-blind, placebo-controlled trial assessing 25 patients with bilateral knee pain from bilateral OA. Patients were randomized to BMAC into one knee and to saline placebo into the other. Fifty-two milliliters of bone marrow was aspirated from the iliac crests and concentrated in an automated centrifuge. The resulting BMAC was combined with platelet-poor plasma for injection into the arthritic knee and was compared with a saline injection into the contralateral knee, thereby using each patient as his or her control. Safety outcomes, pain relief, and function as measured by Osteoarthritis Research Society International measures and a VAS score were tracked initially at 1 week, 3 months, and 6 months postprocedure. Study patients experienced a similar relief of pain in both BMAC- and saline-treated arthritic knees.

Adipose-Derived Mesenchymal Stem Cells
Adipose-derived stem cells are also multipotent MSCs that can be harvested from multiple anatomic locations and with greater ease than bone marrow-derived MSCs. The literature on adipose-derived MSCs for articular cartilage repair comes primarily from research groups in Korea. One group appears to have been providing this treatment as an option for patients for a number of years. They compare outcomes of this new add-on treatment with those of patients who only received other cartilage repair procedures.

Koh et al (2014) reported results of an RCT that evaluated cartilage healing after high tibial osteotomy in 52 patients with OA. Patients were randomized via sealed envelopes to high tibial osteotomy with the application of platelet-rich plasma (PRP) or to high tibial osteotomy with the application of PRP plus MSCs. A total of 44 patients completed second-look arthroscopy and 1- and 2-year clinical follow-ups. The primary outcomes were the KOOS (0-100 scale), the LKS score (0-100 scale), and a VAS for pain (0-100 scale). There were statistically significant differences between PRP only and PRP plus MSC on 2 of 5 KOOS subscales: pain (74 vs 81.2, p<0.001) and symptoms (75.4 versus 82.8, p=0.006), all respectively. There were also statistically significant differences on the final pain score between the PRP only (16.2) and PRP plus MSC groups (10.2; p<0.001), but the final LKS score did not differ significantly between the PRP only (80.6) and PRP plus MSC groups (84.7; p=0.36). Articular cartilage healing was rated as improved with MSCs following video review of second-look arthroscopy; blinding of this measure is unclear. There were limitations in study design (small sample size, short duration of follow-up). Also, significant improvements were found only on some outcomes, all significant differences in outcomes were modest in magnitude and, as a result, there is uncertainty about the clinical significance of the findings.
Mesenchymal Stems Cells from Peripheral Blood
A 2013 report from Asia described a small RCT assessing the use of with autologous peripheral blood MSCs for focal articular cartilage lesions.15 Fifty patients with grade 3 or 4 lesions of the knee joint underwent arthroscopic subchondral drilling followed by 5 weekly injections of HA. Half the patients were randomized to injections of peripheral blood stem cells or no further treatment. The peripheral blood stem cells were harvested after stimulation with recombinant human granulocyte colony-stimulating factor, divided in vials, and cryopreserved. At 6 months after surgery, HA and MSCs were re-administered over 3 weekly injections. At 18 months post-surgery, second-look arthroscopy on 16 patients in each group showed significantly higher histologic scores (\approx 10\%) for the MSC group (1066 versus 957 by independent observers) while blinded evaluation of MRI scans showed a higher morphologic score (9.9 versus 8.5). There was no difference in IKDC scores between the 2 groups at 24 months after surgery.

Section Summary: Cartilage Defects
The evidence on MSCs for cartilage repair is increasing, although nearly all studies to date have been performed outside of the United States with a variety of methods of MSC preparation. Overall, the quality of evidence is low and there is a possibility of publication bias. The strongest evidence base is on MSCs expanded from bone marrow, which includes several phase 1/2 RCTs. Compared to either placebo or an active HA control, treatment with expanded MSCs has been shown to provide some improvement in pain and function. Limitations in these initial trials preclude reaching conclusions, but the results to date do support future study in phase 3 trials. Alternative methods of obtaining MSCs that have been reported in RCTs include peripheral blood, adipose tissue, and bone marrow concentrate. These have been reported in a smaller number of trials and with mixed results. Additional study in a larger sample of patients with longer follow-up would be needed to evaluate the long-term efficacy and safety of these procedures. FDA approval for these methods has also not been obtained.

MENISCAL DEFECTS

Clinical Context and Therapy Purpose
The purpose of stem cell therapy is to provide a treatment option that is an alternative to or an improvement on existing therapies in patients with meniscal defects.

The question addressed in this evidence review: Is stem cell therapy associated with improved health outcomes for patients with meniscal defects?

The following PICO was used to select literature to inform this review.

Populations
The relevant population of interest is individuals with meniscal defects.

Interventions
The therapy being considered is stem cell therapy.
Comparators
Comparators of interest include conservative management.

Outcomes
The general outcomes of interest are symptoms, morbid events, functional outcomes, QOL, and TRM.

Study Selection Criteria
Methodologically credible studies were selected using principles detailed under the first intervention.

Review of Evidence
Damage to the meniscal cartilage in the knee is a very common orthopedic injury and predisposes to the development of OA. The tissue is relatively avascular and does not spontaneously heal well.

Whitehouse et al (2017) published a report on techniques of in vitro expansion of autologous derived MSCs and a case series of first-in-human implantation to treat meniscal defects in 5 patients.17 The regulatory framework in the United Kingdom allows cell manipulation and requires immunohistochemical documentation of the presence and volume of mesenchymal cells. Over the first 12 months postprocedure, 3 of the 5 patients were reported to have clinical symptom relief, which persisted through 24 months. MRI scans showing lack of meniscal displacement were the only other postoperative assessment. The 2 patients who failed to obtain symptom relief at 6 and 12 months had to repeat arthroscopic procedures with meniscectomy.

Vangsness et al (2014) reported an industry-sponsored phase 1/2 randomized, double-blind, multicenter Study of Chondrogen – Adult Universal Cell Delivered by Intra-Articular Injections Following Miniscectomy in Patients 18-60 Years (NCT00225095, NCT00702741) of cultured allogeneic MSCs (Chondrogen, Osiris Therapeutics) injected into the knee after partial meniscectomy.18 The 55 patients in this United States study were randomized to intra-articular injection of either 50 x10⁶ allogeneic MSCs, 150 x10⁶ allogeneic MSCs in HA, or an HA vehicle control at 7 to 10 days after meniscectomy. The cultured MSCs were derived from BMAC of unrelated donors. At 2-year follow-up, 3 patients in the low-dose MSC group had significantly increased meniscal volume measured by MRI (with an a priori determined threshold of at least 15%) compared with none in the control group or the high-dose MSC group. There was no significant difference between the groups in LKS scores. On subgroup analysis, patients with OA who received MSCs had a significantly greater reduction in pain at 2 years than patients who received HA alone. This trial appears to have been a post hoc analysis and, hence, should be considered preliminary. No serious adverse events were reported as related to the investigational treatment.

Section Summary: Meniscal Defects
The evidence on the use of MSCs to repair or regenerate damaged meniscal tissue consists of preclinical animal studies, a first-in-human uncontrolled implantation of expanded autologous MSCs into meniscal tears and an early-phase randomized trial of cultured allogeneic MSCs injected into the site of partial meniscectomy. Results are preliminary.
JOINT FUSION PROCEDURES

Clinical Context and Therapy Purpose
The purpose of stem cell therapy is to provide a treatment option that is an alternative to or an improvement on existing therapies in patients with joint fusion procedures.

The question addressed in this evidence review: Is stem cell therapy associated with improved health outcomes for patients with joint fusion procedures?

The following PICO was used to select literature to inform this review.

Populations
The relevant population of interest is individuals with joint fusion procedures.

Interventions
The therapy being considered is stem cell therapy.

Comparators
Comparators of interest include iliac crest bone graft.

Outcomes
The general outcomes of interest are symptoms, morbid events, functional outcomes, QOL, and TRM. Follow-up over months to years is of interest for relevant outcomes.

Study Selection Criteria
Methodologically credible studies were selected using principles detailed under the first intervention.

Review of Evidence
There is limited evidence on the use of allografts with stem cells for bone fusion of the extremities or spine or the treatment of nonunion. The results of several industry-sponsored, early-phase trials are available.

A prospective, clinical and radiographic 12-month outcomes study (2016) of patients undergoing single-level anterior cervical discectomy and fusion (ACDF) for symptomatic cervical degenerative disc disease utilizing a novel viable allogeneic stem cell and cancellous bone matrix (Trinity Evolution) was reported using historical controls as the comparator. The ACDF procedure was performed using the polyetheretherketone interbody spacer and bone graft substitute (Trinity Evolution) in 31 patients at multiple clinical sites. At 6 and 12 months, the primary end point of radiographic fusion was evaluated as determined by independent radiographic review and the fusion rate was 78.6% at 6 months and 93.5% at 12 months. Secondary end points included a function as assessed by Neck Disability Index scores, and neck and arm pain as assessed by individual VAS scores. Neck function and neck and arm pain were reported as significantly improved at both 6 and 12 months postprocedure. Reported adverse events included carpal tunnel syndrome, minor pain, numbness, permanent and/or unresolved pain, and swelling. Independent medical adjudication of the 26 adverse events
occurring in 31 patients found that no adverse events were definitely or probably related to Trinity Evolution. However, 5 adverse events were found to be possibly related to Trinity Evolution with 3 events of mild severity and 2 of moderate severity.

A similar study (2017) involving several of the same investigators and clinical sites reported on the clinical and radiographic evaluation of an allogeneic bone matrix containing stem cells (Trinity Evolution Viable Cellular Bone Matrix) in patients undergoing 2-level ACDF. This study involved 40 patients exposed to the ACDF and bone graft substitute procedure at 2 adjacent disc levels. A panel blinded to clinical outcomes reviewed 12-month dynamic motion plain radiographs and thin-cut computed tomography with multiplanar reconstruction. At 12 months, the per-subject and per-level fusion rates were 89.4% and 93.4%, respectively. The clinical function assessments using Neck Disability Index and VAS scores were reported to have improved from baseline.

A 2015 prospective, multicenter, open-label clinical trial using a cryopreserved donor mesenchymal cell scaffold (Trinity Evolution) was performed in subjects undergoing foot and/or ankle arthrodesis with surgeons' preferred technique. A total of 103 subjects were prospectively enrolled at 10 participating sites. No restrictions were placed on the diagnosis, which included arthritis (primary OAs, posttraumatic OS, and rheumatoid), deformity, neuropathy (Charcot and diabetic), revision surgery, and degenerative joint disease, and arthrodesis was performed in 171 joints. The per-protocol population consisted of 92 patients at 6 months and 76 patients at 12 months, with 153 and 129 total arthrodeses, respectively. The primary end point was fusion at 6 months, as assessed from computed tomography scans and standard radiographs by an independent radiology consultant. At 6 months, the fusion rate for all patients was 68.5% and 81.1% for all joints. American Orthopaedic Foot and Ankle Society Hindfoot Scale scores for disability improved over time.

Eastlack et al (2014) reported on outcomes from a series of 182 patients who were treated with ACDF using Osteocel Plus in a polyetheretherketone cage and anterior plating. At 24 months, 74% of patients (180/249 levels treated) were available for follow-up. These patients had significant improvements in clinical outcomes, with 87% of levels achieved solid bridging, and 92% of levels had a range of motion less than 3°. With 26% loss to follow-up at 24 months and lack of a standard of care control group, interpretation of these results is limited.

Section Summary: Joint Fusion Procedures

The evidence on the use of MSCs as a component of joint fusion procedures primarily comes from industry-sponsored, prospective, open-label procedures. Outcomes included radiologic assessments of fusion, sometimes made independently, and patient-reported measures (eg, VAS scores). The MSCs used were cryopreserved allogeneic in origin. Presumptive benefits of allogeneic MSCs are that patients undergoing an orthopedic intervention procedure do not need another graft harvesting procedure and that dose of stem cells can be managed.

OSTEONECROSIS

Clinical Context and Therapy Purpose
The purpose of stem cell therapy is to provide a treatment option that is an alternative to or an improvement on existing therapies in patients with osteonecrosis.

The question addressed in this evidence review: Is stem cell therapy associated with improved health outcomes for patients with osteonecrosis?

The following PICO was used to select literature to inform this review.

Populations
The relevant population of interest is individuals with osteonecrosis.

Interventions
The therapy being considered is therapy with MSCs.

Comparators
Comparators of interest include core decompression.

Outcomes
The general outcomes of interest are symptoms, morbid events, functional outcomes, QOL, and TRM.

Follow-up over months to years is of interest for relevant outcomes.

Study Selection Criteria
Methodologically credible studies were selected using principles detailed under the first indication.

REVIEW OF EVIDENCE
At least 2 randomized comparative trials from Asia have evaluated the use of MSCs for osteonecrosis of the femoral head.

Mesenchymal Stem Cells Concentrated From Bone Marrow Aspirate Concentrate
Sen et al (2012) randomized 40 patients (51 hips) with early-stage femoral head osteonecrosis to core decompression plus concentrated bone marrow MSCs or core decompression alone. Blinding of assessments in this small trial was not described. Harris Hip Score was significantly improved in the core decompression plus MSC group compared with the core decompression alone group at 12 months (scores, 83.65 versus 76.68, p<0.016) but not at 24 months (scores, 82.42 versus 77.39; p=0.09), all respectively. Kaplan-Meier analysis showed improved hip survival in the MSC group (mean, 51.9 weeks) compared with the core decompression group (mean, 46.7 weeks). There were no significant differences between groups in radiographic assessment or MRI results.

Mesenchymal Stem Cells Expanded From Bone Marrow
Zhao et al (2012) reported on a randomized trial that included 100 patients (104 hips) with early-stage femoral head osteonecrosis treated with core decompression and expanded bone marrow MSCs or with core decompression alone. At 60 months postsurgery, 2 (3.7%) of the 53 hips treated with MSCs progressed and underwent vascularized bone grafting compared with 10 (23%) of 44 hips in the decompression group who progressed and underwent either
vascularized bone grafting (n=5) or total hip replacement (n=5). The MSC group also had improved Harris Hip Scores compared with the control group on independent evaluation (data presented graphically). Lesion volume was also reduced by treatment with MSCs.

Section Summary: Osteonecrosis
Two small studies from Asia have compared core decompression alone with core decompression plus MSCs in patients with osteonecrosis of the femoral head. Both reported improvement in the Harris Hip Score in patients treated with MSCs, although it was not reported whether the patients or investigators were blinded to the treatment group. Hip survival was significantly improved following treatment with either expanded or concentrated MSCs. The effect appears to be larger with expanded MSCs than with concentrated MSCs. Additional, well-designed RCTs with a large number of patients are needed to permit greater certainty on the efficacy of this treatment for osteonecrosis.

SUMMARY OF EVIDENCE
For individuals who have cartilage defects, meniscal defects, joint fusion procedures, or osteonecrosis who receive stem cell therapy, the evidence includes small RCTs and nonrandomized comparative trials. Relevant outcomes are symptoms, morbid events, functional outcomes, quality of life, and treatment-related morbidity. Use of MSCs for orthopedic conditions is an active area of research. Despite continued research into the methods of harvesting and delivering treatment, there are uncertainties regarding the optimal source of cells and the delivery method. Studies have included MSCs from bone marrow, adipose tissue and peripheral blood. Overall, the quality of evidence is low and there is a possibility of publication bias. The strongest evidence to date is on MSCs expanded from bone marrow, which includes several phase 1/2 RCTs. Limitations in these initial trials preclude reaching conclusions, but the results to date do support future study in phase 3 trials. Alternative methods of obtaining MSCs have been reported in a smaller number of trials and with mixed results. Additional study in a larger sample of patients with longer follow-up would be needed to evaluate the long-term efficacy and safety of these procedures. Also, expanded MSCs for orthopedic applications are not U.S. Food and Drug Administration approved (concentrated autologous MSCs do not require agency approval). Overall, there is a lack of evidence that clinical outcomes are improved. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements
American College of Rheumatology and Arthritis Foundation
In 2019, guidelines from the American College of Rheumatology and Arthritis Foundation on osteoarthritis (OA) of the hand, hip, and knee gave a strong recommendation against stem cell injections in patients with knee and/or hip OA, noting the heterogeneity in preparations and lack of standardization of techniques.\(^\text{25}\) No recommendation was made for hand OA, since efficacy of stem cells has not been evaluated.

American Academy of Orthopaedic Surgeons
A 2020 guideline from American Association of Orthopaedic Surgeons on the management of glenohumeral joint OA, endorsed by several other societies, states that injectable biologics
such as stem cells cannot be recommended in the treatment of glenohumeral joint OA. There was consensus from the panel that better standardization and high-quality evidence from clinical trials is needed to provide definitive evidence on the efficacy of biologics in glenohumeral OA. The strength of evidence was rated as no reliable scientific evidence to determine benefits and harms.

The 2013 guideline on treatment of osteoarthritis of the knee does not address stem cell injections.

American Association of Neurological Surgeons
In 2014, the American Association of Neurological Surgeons guidelines on fusion procedures for degenerative disease of the lumbar spine indicated that, “The use of demineralized bone matrix (DBM) as a bone graft extender is an option for 1- and 2-level instrumented posterolateral fusions. Demineralized Bone Matrix: Grade C (poor level of evidence).”

U.S. Preventive Services Task Force Recommendations
Not applicable.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 6.

Table 6. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT04043819a</td>
<td>Evaluation of Safety and Exploratory Efficacy of PSC-01, an Autologous Adipose-derived Stromal Vascular Fraction Cell Therapy Product for the Treatment of Knee Osteoarthritis</td>
<td>125</td>
<td>Jan 2021</td>
</tr>
<tr>
<td>NCT03818737</td>
<td>Randomized Multicenter Phase 3 Single-blind Trial Comparing the Efficacy of Corticosteroid Control to Mesenchymal Stem Cell Preparations From Autologous Bone Marrow Concentrate (BMAC), Adipose-derived Stem Cells in the Form of Stromal Vascular Fraction (SVF), and Third-party Human Mesenchymal Stem Cells Manufactured From Umbilical Cord Tissue for the Treatment of Unilateral Knee Osteoarthritis (OA)</td>
<td>480</td>
<td>Dec 2021</td>
</tr>
<tr>
<td>NCT04310215a</td>
<td>A Multi-center, Single-blind, Randomized, Phase III Clinical Trial to Evaluate the Efficacy and Safety of Adding CARTISTEM® on Microfracture in Patients With Talar Chondral or Osteochondral Defect</td>
<td>100</td>
<td>Dec 2021</td>
</tr>
<tr>
<td>NCT02582489</td>
<td>Prospective, Randomized, Double-blind Clinical Trial to Investigate the Efficacy of Autologous Bone Marrow Aspirate Concentrate Post-Menisectomy</td>
<td>100</td>
<td>Jan 2022</td>
</tr>
<tr>
<td>NCT03067870</td>
<td>Transplantation of Autologous Purified Bone Marrow Derived Specific Populations of Stem Cells and Mesenchymal Stem Cells in Patients With Rheumatoid Arthritis</td>
<td>100</td>
<td>Feb 2022</td>
</tr>
<tr>
<td>NCT04368806a</td>
<td>A 48-Weeks, Phase 2b/3a, Double-Blind, Randomized, Placebo Controlled, Multi-center, Superiority Study to Evaluate the Efficacy and Safety of JointStem, Autologous Adipose Tissue Derived Mesenchymal Stem Cells in Patients Diagnosed as Knee Osteoarthritis</td>
<td>140</td>
<td>Dec 2022</td>
</tr>
</tbody>
</table>
NCT02838069 A Phase IIb, Prospective, Multicentre, Double-blind, Triple-arm, Randomized Versus Placebo Trial, to Assess the Efficacy of a Single Injection of Either 2 or 10 x 106 Autologous Adipose Derived Mesenchymal Stromal Cells (ASC) in the Treatment of Mild to Moderate Osteoarthritis (OA) of the Knee, Active and Unresponsive to Conservative Therapy for at Least 12 Months 153 Jun 2023

NCT04448106a Clinical Study for Subjects With Osteoarthritis of Knees, Hips, and Shoulders Using a Combination of Intravenous Infusions With Intra-articular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells (AdMSCs) 300 Jan 2024

Unpublished

NCT01413061a Study of Subtalar Arthrodesis Using AlloStem® Versus Autologous Bone Graft 140 Mar 2018 (completed)

NCT01041001a Randomized, Open-Label, Multi-Center and Phase 3 Clinical Trial to Compare the Efficacy and Safety of Cartistem® and Microfracture in Patients With Knee Articular Cartilage Injury or Defect 104 Jan 2011 (completed)

NCT01626677a Long Term Follow-Up Study of CARTISTEM® Versus Microfracture for the Treatment of Knee 104 May 2015 (completed)

NCT01504464 Evaluation the Effects of Intra-articular Injection of Mesenchymal Stem Cells in Patients With Knee Joint Osteoarthritis, Triple Blind Randomized Clinical Trial 40 Oct 2015 (completed)

NCT03990805a Multi-center, Randomized, Double-Blind, Placebo Controlled Phase 3 Clinical Trial to Evaluate Efficacy and Safety of Mesenchymal Stem Cells JointStem in Patients With Knee Osteoarthritis 260 Nov 2020

NCT: national clinical trial.
a Denotes industry-sponsored or cosponsored trial.

Government Regulations

National:
There is no national coverage determination on this topic.

Local:
There is no local coverage determination on this topic.

The 2021 CMS Physician Fee Schedule does not show fees for 0565T and 0566T.

(The above Medicare information is current as of the review date for this policy. However, the coverage issues and policies maintained by the Centers for Medicare & Medicare Services [CMS, formerly HCFA] are updated and/or revised periodically. Therefore, the most current CMS information may not be contained in this document. For the most current information, the reader should contact an official Medicare source.)

Related Policies

- Autologous Chondrocyte Transplant (Retired)
• Prolotherapy
• Recombinant and Autologous Platelet-Derived Growth Factors as a Treatment of Wound Healing and Other Conditions
• Stem Cell Therapy for Spinal Cord Injury
• Stem Cell Therapy in the Treatment of Peripheral Artery Disease

References

The articles reviewed in this research include those obtained in an Internet based literature search for relevant medical references through 2/26/2021, the date the research was completed.
Joint BCBSM/BCN Medical Policy History

<table>
<thead>
<tr>
<th>Policy Effective Date</th>
<th>BCBSM Signature Date</th>
<th>BCN Signature Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/1/12</td>
<td>9/27/12</td>
<td>9/27/12</td>
<td>Joint policy established</td>
</tr>
<tr>
<td>3/1/14</td>
<td>12/10/13</td>
<td>1/6/14</td>
<td>Routine maintenance; added allograft bone products containing viable stem cells, including but not limited to demineralized bone matrix (DBM) with stem cells as experimental/investigational.</td>
</tr>
<tr>
<td>3/1/16</td>
<td>12/10/15</td>
<td>12/10/15</td>
<td>Routine maintenance. Added allograft or synthetic bone graft substitutes that must be combined with autologous blood or bone marrow to medical policy statement as experimental/investigational. Removed codes 38206, 38230 and 38241</td>
</tr>
<tr>
<td>3/1/17</td>
<td>12/13/16</td>
<td>12/13/16</td>
<td>Routine maintenance. Added “(Including Allografts and Bone Substitutes Used With Autologous Bone Marrow)” to the policy title</td>
</tr>
<tr>
<td>11/1/17</td>
<td>8/15/17</td>
<td>8/15/17</td>
<td>Routine maintenance</td>
</tr>
<tr>
<td>11/1/18</td>
<td>8/21/18</td>
<td>8/21/18</td>
<td>Routine maintenance</td>
</tr>
<tr>
<td>11/1/19</td>
<td>8/20/19</td>
<td></td>
<td>Routine maintenance. Code 20939 added to policy</td>
</tr>
<tr>
<td>7/1/20</td>
<td>5/19/20</td>
<td></td>
<td>Code update: added 0565T, 0566T. Also added 20930, 20931</td>
</tr>
<tr>
<td>7/1/21</td>
<td>4/20/21</td>
<td></td>
<td>Routine maintenance. Ref 4,5 and 25 added</td>
</tr>
</tbody>
</table>

Next Review Date: 2nd Qtr, 2022
Blue Care Network Benefit Coverage Policy: Orthopedic Applications of Stem-Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow)

I. Coverage Determination:

<table>
<thead>
<tr>
<th>Plan Type</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial HMO (includes Self-Funded groups unless otherwise specified)</td>
<td>Not covered</td>
</tr>
<tr>
<td>BCNA (Medicare Advantage)</td>
<td>See Government Regulations section.</td>
</tr>
<tr>
<td>BCN65 (Medicare Complementary)</td>
<td>Coinsurance covered if primary Medicare covers the service.</td>
</tr>
</tbody>
</table>

II. Administrative Guidelines:

- The member's contract must be active at the time the service is rendered.
- Coverage is based on each member’s certificate and is not guaranteed. Please consult the individual member’s certificate for details. Additional information regarding coverage or benefits may also be obtained through customer or provider inquiry services at BCN.
- The service must be authorized by the member's PCP except for Self-Referral Option (SRO) members seeking Tier 2 coverage.
- Services must be performed by a BCN-contracted provider, if available, except for Self-Referral Option (SRO) members seeking Tier 2 coverage.
- Payment is based on BCN payment rules, individual certificate and certificate riders.
- Appropriate copayments will apply. Refer to certificate and applicable riders for detailed information.
- CPT - HCPCS codes are used for descriptive purposes only and are not a guarantee of coverage.